Abstract
We propose a deep convolutional neural network (CNN) to estimate surface normal from a single color image accompanied with a low-quality depth channel. Unlike most previous works, we predict the normal on the 2-sphere rather than the 3D Euclidean space, which produces naturally normalized values and makes the training stable. Although the depth information is beneficial for normal estimation, the raw data contain missing values and noises. To alleviate this problem, we employ a confidence guided semantic attention (CGSA) module to progressively improve the quality of depth channel during training. The continuously refined depth features are fused with the normal features at multiple scales with the mutual feature fusion (MFF) modules to fully exploit the correlations between normals and depth, resulting in high quality normals and depth with fine details. Extensive experiments on multiple benchmark datasets prove the superiority of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use four CFT blocks to improve the MFF module’s ability of representing more complex feature transformations.
References
Bansal, A., Russell, B., Gupta, A.: Marr revisited: 2D–3D model alignment via surface normal prediction. In: CVPR (2016)
Li, B., Shen, C., Dai, Y., Van Den Hengel, A., He, M.: Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1119–1127, June 2015. https://doi.org/10.1109/CVPR.2015.7298715
Chang, A., et al.: Matterport3D: learning from RGB-D data in indoor environments. International Conference on 3D Vision (3DV) (2017)
Cheng, Y., Cai, R., Li, Z., Zhao, X., Huang, K.: Locality-sensitive deconvolution networks with gated fusion for RGB-D indoor semantic segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1475–1483, July 2017. https://doi.org/10.1109/CVPR.2017.161
Zimmermann, C., Welschehold, T., Dornhege, C., Burgard, W., Brox, T.: 3D human pose estimation in RGBD images for robotic task learning. In: IEEE International Conference on Robotics and Automation (ICRA) (2018). https://lmb.informatik.uni-freiburg.de/projects/rgbd-pose3d/
Dai, A., Nießner, M., Zollöfer, M., Izadi, S., Theobalt, C.: Bundlefusion: real-time globally consistent 3D reconstruction using on-the-fly surface re-integration. ACM Trans. Graph. (TOG) 36(4), 1 (2017)
Denton, E.L., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a laplacian pyramid of adversarial networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 1486–1494. Curran Associates, Inc. (2015). http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-laplacian-pyramid-of-adversarial-networks.pdf
Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2650–2658, December 2015. https://doi.org/10.1109/ICCV.2015.304
Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: CVPR (2017)
Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345–360. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_23
Haefner, B., Quéau, Y., Möllenhoff, T., Cremers, D.: Fight ill-posedness with ill-posedness: single-shot variational depth super-resolution from shading. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 164–174 (2018)
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011). https://doi.org/10.1109/TPAMI.2010.168
He, Y., Chiu, W., Keuper, M., Fritz, M.: STD2P: RGBD semantic segmentation using spatio-temporal data-driven pooling. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7158–7167, July 2017. https://doi.org/10.1109/CVPR.2017.757
Herrera, C.D., Kannala, J., Ladický, L., Heikkilä, J.: Depth map inpainting under a second-order smoothness prior. In: Kämäräinen, J.-K., Koskela, M. (eds.) SCIA 2013. LNCS, vol. 7944, pp. 555–566. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38886-6_52
Hui, T.W., Loy, C.C., Tang, X.: Depth map super-resolution by deep multi-scale guidance. In: Proceedings of European Conference on Computer Vision (ECCV) (2016)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017
Izadi, S., et al.: Kinectfusion: real-time 3D reconstruction and interaction using a moving depth camera. In: UIST 2011 Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 559–568. ACM, October 2011. https://www.microsoft.com/en-us/research/publication/kinectfusion-real-time-3d-reconstruction-and-interaction-using-a-moving-depth-camera/
Jeon, J., Lee, S.: Reconstruction-based pairwise depth dataset for depth image enhancement using CNN. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 438–454. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_26
Ladický, L., Zeisl, B., Pollefeys, M.: Discriminatively trained dense surface normal estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 468–484. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_31
Lee, S., Park, S.J., Hong, K.S.: RDFNet: RGB-D multi-level residual feature fusion for indoor semantic segmentation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4990–4999 (2017)
Liao, S., Gavves, E., Snoek, C.G.M.: Spherical regression: learning viewpoints, surface normals and 3D rotations on n-spheres. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Litany, O., Bronstein, A.M., Bronstein, M.M., Makadia, A.: Deformable shape completion with graph convolutional autoencoders. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1886–1895 (2017)
Liu, J., Gong, X., Liu, J.: Guided inpainting and filtering for kinect depth maps. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR 2012), pp. 2055–2058. IEEE (2012)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Newcombe, R.A., Fox, D., Seitz, S.M.: Dynamicfusion: reconstruction and tracking of non-rigid scenes in real-time. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 343–352, June 2015. https://doi.org/10.1109/CVPR.2015.7298631
Or-El, R., Rosman, G., Wetzler, A., Kimmel, R., Bruckstein, A.M.: RGBD-fusion: real-time high precision depth recovery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5407–5416 (2015)
Park, J., Kim, H., Tai, Y.W., Brown, M.S., Kweon, I.: High quality depth map upsampling for 3D-TOF cameras. In: 2011 International Conference on Computer Vision, pp. 1623–1630, November 2011. https://doi.org/10.1109/ICCV.2011.6126423
Qi, X., Liao, R., Jia, J., Fidler, S., Urtasun, R.: 3D graph neural networks for RGBD semantic segmentation. In: ICCV (2017)
Qi, X., Liao, R., Liu, Z., Urtasun, R., Jia, J.: Geonet: geometric neural network for joint depth and surface normal estimation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Ramamonjisoa, M., Lepetit, V.: Sharpnet: fast and accurate recovery of occluding contours in monocular depth estimation. In: The IEEE International Conference on Computer Vision (ICCV) Workshops (2019)
Ruizhongtai Qi, C., Liu, W., Wu, C., Su, H., Guibas, L.: Frustum pointnets for 3D object detection from RGB-D data, pp. 918–927, June 2018. https://doi.org/10.1109/CVPR.2018.00102
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Wang, X., Fouhey, D.F., Gupta, A.: Designing deep networks for surface normal estimation. In: CVPR (2015)
Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Advances in Neural Information Processing Systems, pp. 82–90 (2016)
Xie, J., Feris, R.S., Sun, M.: Edge-guided single depth image super resolution. IEEE Trans. Image Process. 25(1), 428–438 (2016). https://doi.org/10.1109/TIP.2015.2501749
Xu, B., et al.: Adversarial monte carlo denoising with conditioned auxiliary feature. ACM Trans. Graph. (Proc. ACM SIGGRAPH Asia 2019) 38(6), 224:1–224:12 (2019)
Yang, Z., Pan, J.Z., Luo, L., Zhou, X., Grauman, K., Huang, Q.: Extreme relative pose estimation for RGB-D scans via scene completion. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Zeng, J., et al.: Deep surface normal estimation with hierarchical RGB-D fusion. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Zhang, Y., Funkhouser, T.: Deep depth completion of a single RGB-D image. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Zhang, Y., et al.: Physically-based rendering for indoor scene understanding using convolutional neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., Yang, J.: Pattern-affinitive propagation across depth, surface normal and semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Acknowledgement
The corresponding authors of this work are Jie Guo and Yanwen Guo. This research was supported by the National Natural Science Foundation of China under Grants 61772257 and the Fundamental Research Funds for the Central Universities 020914380080.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, Q. et al. (2020). Deep Surface Normal Estimation on the 2-Sphere with Confidence Guided Semantic Attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12369. Springer, Cham. https://doi.org/10.1007/978-3-030-58586-0_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-58586-0_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58585-3
Online ISBN: 978-3-030-58586-0
eBook Packages: Computer ScienceComputer Science (R0)