Skip to main content

Deep Surface Normal Estimation on the 2-Sphere with Confidence Guided Semantic Attention

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

We propose a deep convolutional neural network (CNN) to estimate surface normal from a single color image accompanied with a low-quality depth channel. Unlike most previous works, we predict the normal on the 2-sphere rather than the 3D Euclidean space, which produces naturally normalized values and makes the training stable. Although the depth information is beneficial for normal estimation, the raw data contain missing values and noises. To alleviate this problem, we employ a confidence guided semantic attention (CGSA) module to progressively improve the quality of depth channel during training. The continuously refined depth features are fused with the normal features at multiple scales with the mutual feature fusion (MFF) modules to fully exploit the correlations between normals and depth, resulting in high quality normals and depth with fine details. Extensive experiments on multiple benchmark datasets prove the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use four CFT blocks to improve the MFF module’s ability of representing more complex feature transformations.

References

  1. Bansal, A., Russell, B., Gupta, A.: Marr revisited: 2D–3D model alignment via surface normal prediction. In: CVPR (2016)

    Google Scholar 

  2. Li, B., Shen, C., Dai, Y., Van Den Hengel, A., He, M.: Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1119–1127, June 2015. https://doi.org/10.1109/CVPR.2015.7298715

  3. Chang, A., et al.: Matterport3D: learning from RGB-D data in indoor environments. International Conference on 3D Vision (3DV) (2017)

    Google Scholar 

  4. Cheng, Y., Cai, R., Li, Z., Zhao, X., Huang, K.: Locality-sensitive deconvolution networks with gated fusion for RGB-D indoor semantic segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1475–1483, July 2017. https://doi.org/10.1109/CVPR.2017.161

  5. Zimmermann, C., Welschehold, T., Dornhege, C., Burgard, W., Brox, T.: 3D human pose estimation in RGBD images for robotic task learning. In: IEEE International Conference on Robotics and Automation (ICRA) (2018). https://lmb.informatik.uni-freiburg.de/projects/rgbd-pose3d/

  6. Dai, A., Nießner, M., Zollöfer, M., Izadi, S., Theobalt, C.: Bundlefusion: real-time globally consistent 3D reconstruction using on-the-fly surface re-integration. ACM Trans. Graph. (TOG) 36(4), 1 (2017)

    Article  Google Scholar 

  7. Denton, E.L., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a laplacian pyramid of adversarial networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 1486–1494. Curran Associates, Inc. (2015). http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-laplacian-pyramid-of-adversarial-networks.pdf

  8. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2650–2658, December 2015. https://doi.org/10.1109/ICCV.2015.304

  9. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: CVPR (2017)

    Google Scholar 

  10. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345–360. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_23

    Chapter  Google Scholar 

  11. Haefner, B., Quéau, Y., Möllenhoff, T., Cremers, D.: Fight ill-posedness with ill-posedness: single-shot variational depth super-resolution from shading. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 164–174 (2018)

    Google Scholar 

  12. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011). https://doi.org/10.1109/TPAMI.2010.168

    Article  Google Scholar 

  13. He, Y., Chiu, W., Keuper, M., Fritz, M.: STD2P: RGBD semantic segmentation using spatio-temporal data-driven pooling. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7158–7167, July 2017. https://doi.org/10.1109/CVPR.2017.757

  14. Herrera, C.D., Kannala, J., Ladický, L., Heikkilä, J.: Depth map inpainting under a second-order smoothness prior. In: Kämäräinen, J.-K., Koskela, M. (eds.) SCIA 2013. LNCS, vol. 7944, pp. 555–566. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38886-6_52

    Chapter  Google Scholar 

  15. Hui, T.W., Loy, C.C., Tang, X.: Depth map super-resolution by deep multi-scale guidance. In: Proceedings of European Conference on Computer Vision (ECCV) (2016)

    Google Scholar 

  16. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  17. Izadi, S., et al.: Kinectfusion: real-time 3D reconstruction and interaction using a moving depth camera. In: UIST 2011 Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 559–568. ACM, October 2011. https://www.microsoft.com/en-us/research/publication/kinectfusion-real-time-3d-reconstruction-and-interaction-using-a-moving-depth-camera/

  18. Jeon, J., Lee, S.: Reconstruction-based pairwise depth dataset for depth image enhancement using CNN. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 438–454. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_26

    Chapter  Google Scholar 

  19. Ladický, L., Zeisl, B., Pollefeys, M.: Discriminatively trained dense surface normal estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 468–484. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_31

    Chapter  Google Scholar 

  20. Lee, S., Park, S.J., Hong, K.S.: RDFNet: RGB-D multi-level residual feature fusion for indoor semantic segmentation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4990–4999 (2017)

    Google Scholar 

  21. Liao, S., Gavves, E., Snoek, C.G.M.: Spherical regression: learning viewpoints, surface normals and 3D rotations on n-spheres. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  22. Litany, O., Bronstein, A.M., Bronstein, M.M., Makadia, A.: Deformable shape completion with graph convolutional autoencoders. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1886–1895 (2017)

    Google Scholar 

  23. Liu, J., Gong, X., Liu, J.: Guided inpainting and filtering for kinect depth maps. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR 2012), pp. 2055–2058. IEEE (2012)

    Google Scholar 

  24. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  25. Newcombe, R.A., Fox, D., Seitz, S.M.: Dynamicfusion: reconstruction and tracking of non-rigid scenes in real-time. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 343–352, June 2015. https://doi.org/10.1109/CVPR.2015.7298631

  26. Or-El, R., Rosman, G., Wetzler, A., Kimmel, R., Bruckstein, A.M.: RGBD-fusion: real-time high precision depth recovery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5407–5416 (2015)

    Google Scholar 

  27. Park, J., Kim, H., Tai, Y.W., Brown, M.S., Kweon, I.: High quality depth map upsampling for 3D-TOF cameras. In: 2011 International Conference on Computer Vision, pp. 1623–1630, November 2011. https://doi.org/10.1109/ICCV.2011.6126423

  28. Qi, X., Liao, R., Jia, J., Fidler, S., Urtasun, R.: 3D graph neural networks for RGBD semantic segmentation. In: ICCV (2017)

    Google Scholar 

  29. Qi, X., Liao, R., Liu, Z., Urtasun, R., Jia, J.: Geonet: geometric neural network for joint depth and surface normal estimation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  30. Ramamonjisoa, M., Lepetit, V.: Sharpnet: fast and accurate recovery of occluding contours in monocular depth estimation. In: The IEEE International Conference on Computer Vision (ICCV) Workshops (2019)

    Google Scholar 

  31. Ruizhongtai Qi, C., Liu, W., Wu, C., Su, H., Guibas, L.: Frustum pointnets for 3D object detection from RGB-D data, pp. 918–927, June 2018. https://doi.org/10.1109/CVPR.2018.00102

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  33. Wang, X., Fouhey, D.F., Gupta, A.: Designing deep networks for surface normal estimation. In: CVPR (2015)

    Google Scholar 

  34. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Advances in Neural Information Processing Systems, pp. 82–90 (2016)

    Google Scholar 

  35. Xie, J., Feris, R.S., Sun, M.: Edge-guided single depth image super resolution. IEEE Trans. Image Process. 25(1), 428–438 (2016). https://doi.org/10.1109/TIP.2015.2501749

    Article  MathSciNet  MATH  Google Scholar 

  36. Xu, B., et al.: Adversarial monte carlo denoising with conditioned auxiliary feature. ACM Trans. Graph. (Proc. ACM SIGGRAPH Asia 2019) 38(6), 224:1–224:12 (2019)

    Google Scholar 

  37. Yang, Z., Pan, J.Z., Luo, L., Zhou, X., Grauman, K., Huang, Q.: Extreme relative pose estimation for RGB-D scans via scene completion. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  38. Zeng, J., et al.: Deep surface normal estimation with hierarchical RGB-D fusion. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  39. Zhang, Y., Funkhouser, T.: Deep depth completion of a single RGB-D image. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  40. Zhang, Y., et al.: Physically-based rendering for indoor scene understanding using convolutional neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  41. Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., Yang, J.: Pattern-affinitive propagation across depth, surface normal and semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

Download references

Acknowledgement

The corresponding authors of this work are Jie Guo and Yanwen Guo. This research was supported by the National Natural Science Foundation of China under Grants 61772257 and the Fundamental Research Funds for the Central Universities 020914380080.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Guo or Yanwen Guo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 22346 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Q. et al. (2020). Deep Surface Normal Estimation on the 2-Sphere with Confidence Guided Semantic Attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12369. Springer, Cham. https://doi.org/10.1007/978-3-030-58586-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58586-0_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58585-3

  • Online ISBN: 978-3-030-58586-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics