Skip to main content

Mitigating Embedding and Class Assignment Mismatch in Unsupervised Image Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12369))

Abstract

Unsupervised image classification is a challenging computer vision task. Deep learning-based algorithms have achieved superb results, where the latest approach adopts unified losses from embedding and class assignment processes. Since these processes inherently have different goals, jointly optimizing them may lead to a suboptimal solution. To address this limitation, we propose a novel two-stage algorithm in which an embedding module for pretraining precedes a refining module that concurrently performs embedding and class assignment. Our model outperforms SOTA when tested with multiple datasets, by substantially high accuracy of 81.0% for the CIFAR-10 dataset (i.e., increased by 19.3 percent points), 35.3% accuracy for CIFAR-100-20 (9.6 pp) and 66.5% accuracy for STL-10 (6.9 pp) in unsupervised tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Codes released at https://github.com/dscig/TwoStageUC.

References

  1. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of the ICML Workshop on Unsupervised and Transfer Learning, pp. 37–49 (2012)

    Google Scholar 

  2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 153–160 (2007)

    Google Scholar 

  3. Bojanowski, P., Joulin, A.: Unsupervised learning by predicting noise. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 517–526 (2017)

    Google Scholar 

  4. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 132–149 (2018)

    Google Scholar 

  5. Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5879–5887 (2017)

    Google Scholar 

  6. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 215–223 (2011)

    Google Scholar 

  7. Ding, C., He, X.: K-means clustering via principal component analysis. In: Proceedings of the International Conference on Machine Learning (ICML), p. 29 (2004)

    Google Scholar 

  8. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. of the International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 226–231 (1997)

    Google Scholar 

  9. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Hoboken (2016)

    MATH  Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 2672–2680 (2014)

    Google Scholar 

  12. Haeusser, P., Plapp, J., Golkov, V., Aljalbout, E., Cremers, D.: Associative deep clustering: training a classification network with no labels. In: Brox, T., Bruhn, A., Fritz, M. (eds.) GCPR 2018. LNCS, vol. 11269, pp. 18–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12939-2_2

    Chapter  Google Scholar 

  13. Han, S., Xu, Y., Park, S., Cha, M., Li, C.T.: A Comprehensive Approach to Unsupervised Embedding Learning based on AND Algorithm. arXiv preprint arXiv:2002.12158 (2020)

  14. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  15. Hu, W., Miyato, T., Tokui, S., Matsumoto, E., Sugiyama, M.: Learning discrete representations via information maximizing self-augmented training. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 1558–1567 (2017)

    Google Scholar 

  16. Huang, J., Dong, Q., Gong, S., Zhu, X.: Unsupervised deep learning by neighbourhood discovery. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 2849–2858 (2019)

    Google Scholar 

  17. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  18. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 9865–9874 (2019)

    Google Scholar 

  19. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  20. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report. Citeseer (2009)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 1097–1105 (2012)

    Google Scholar 

  22. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  23. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)

  24. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  25. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  26. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  27. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  28. Paninski, L.: Estimation of entropy and mutual information. Neural Comput. 15(6), 1191–1253 (2003)

    Article  Google Scholar 

  29. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  30. Salimans, T., Kingma, D.P.: Weight normalization: a simple reparameterization to accelerate training of deep neural networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 901–909 (2016)

    Google Scholar 

  31. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)

    Google Scholar 

  32. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017)

    Google Scholar 

  33. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 1195–1204 (2017)

    Google Scholar 

  34. Trigeorgis, G., Bousmalis, K., Zafeiriou, S., Schuller, B.: A deep semi-NMF model for learning hidden representations. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 1692–1700 (2014)

    Google Scholar 

  35. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: Normface: L2 hypersphere embedding for face verification. In: Proceedings of the ACM International Multimedia Conference, pp. 1041–1049 (2017)

    Google Scholar 

  37. Wang, J., Wang, J., Song, J., Xu, X.S., Shen, H.T., Li, S.: Optimized cartesian k-means. IEEE Trans. Knowl. Data Eng. 27(1), 180–192 (2014)

    Article  Google Scholar 

  38. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3733–3742 (2018)

    Google Scholar 

  39. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 478–487 (2016)

    Google Scholar 

  40. Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: simultaneous deep learning and clustering. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 3861–3870 (2017)

    Google Scholar 

  41. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5147–5156 (2016)

    Google Scholar 

  42. Ye, M., Zhang, X., Yuen, P.C., Chang, S.F.: Unsupervised embedding learning via invariant and spreading instance feature. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6210–6219 (2019)

    Google Scholar 

  43. Zhao, J., Mathieu, M., Goroshin, R., Lecun, Y.: Stacked what-where auto-encoders. arXiv preprint arXiv:1506.02351 (2015)

Download references

Acknowledgement

We thank Cheng-Te Li and Yizhan Xu for their insights and discussions. This work was supported by the Institute for Basic Science (IBS-R029-C2) and the Basic Science Research Program through the National Research Foundation funded by the Ministry of Science and ICT in Korea (No. NRF-2017R1E1A1A01076400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meeyoung Cha .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 620 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, S., Park, S., Park, S., Kim, S., Cha, M. (2020). Mitigating Embedding and Class Assignment Mismatch in Unsupervised Image Classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12369. Springer, Cham. https://doi.org/10.1007/978-3-030-58586-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58586-0_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58585-3

  • Online ISBN: 978-3-030-58586-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics