Skip to main content

Adversarial Learning for Zero-Shot Domain Adaptation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12366))

Included in the following conference series:

  • 4462 Accesses

Abstract

Zero-shot domain adaptation (ZSDA) is a category of domain adaptation problems where neither data sample nor label is available for parameter learning in the target domain. With the hypothesis that the shift between a given pair of domains is shared across tasks, we propose a new method for ZSDA by transferring domain shift from an irrelevant task (IrT) to the task of interest (ToI). Specifically, we first identify an IrT, where dual-domain samples are available, and capture the domain shift with a coupled generative adversarial networks (CoGAN) in this task. Then, we train a CoGAN for the ToI and restrict it to carry the same domain shift as the CoGAN for IrT does. In addition, we introduce a pair of co-training classifiers to regularize the training procedure of CoGAN in the ToI. The proposed method not only derives machine learning models for the non-available target-domain data, but also synthesizes the data themselves. We evaluate the proposed method on benchmark datasets and achieve the state-of-the-art performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  2. Chen, Y., Lin, Y., Yang, M., Huang, J.: Crdoco: pixel-level domain transfer with cross-domain consistency. In: CVPR, pp. 1791–1800 (2019)

    Google Scholar 

  3. Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: an extension of MNIST to handwritten letters. arXiv (2017)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  5. Ding, Z., Fu, Y.: Deep domain generalization with structured low-rank constraint. IEEE Trans. Image Process. 27(1), 304–313 (2018)

    Article  MathSciNet  Google Scholar 

  6. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML, vol. 37, pp. 1180–1189 (2015)

    Google Scholar 

  7. Ghassami, A., Kiyavash, N., Huang, B., Zhang, K.: Multi-domain causal structure learning in linear systems. In: NeurIPS, pp. 6269–6279 (2018)

    Google Scholar 

  8. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: ICCV (2015)

    Google Scholar 

  9. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  10. Grother, P., Hanaoka, K.: NIST special database 19 handprinted forms and characters database. In: National Institute of Standards and Technology (2016)

    Google Scholar 

  11. Haeusser, P., Frerix, T., Mordvintsev, A., Cremers, D.: Associative domain adaptation. In: ICCV, pp. 2784–2792 (2017)

    Google Scholar 

  12. Han, X., Kashif, R., Roland, V.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  14. Khosla, A., Zhou, T., Malisiewicz, T., Efros, A.A., Torralba, A.: Undoing the damage of dataset bias. In: ECCV (2012)

    Google Scholar 

  15. Kodirov, E., Xiang, T., Fu, Z., Gong, S.: Unsupervised domain adaptation for zero-shot learning. In: ICCV (2015)

    Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1106–1114 (2012)

    Google Scholar 

  17. Kumagai, A., Iwata, T.: Zero-shot domain adaptation without domain semantic descriptors. CoRR abs/1807.02927 (2018)

    Google Scholar 

  18. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: ICCV (2017)

    Google Scholar 

  19. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: Meta-learning for domain generalization. In: AAAI (2018)

    Google Scholar 

  20. Li, Y., et al.: Deep domain generalization via conditional invariant adversarial networks. In: ECCV (2018)

    Google Scholar 

  21. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: NIPS (2016)

    Google Scholar 

  22. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: NIPS, pp. 136–144 (2016)

    Google Scholar 

  23. Lopez-Paz, D., Hernández-Lobato, J., Schölkopf, B.: Semi-supervised domain adaptation with non-parametric copulas. In: NIPS (2012)

    Google Scholar 

  24. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation. In: CVPR (2019)

    Google Scholar 

  25. Lécun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE (1998)

    Google Scholar 

  26. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: ICML (2013)

    Google Scholar 

  27. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE TKDE 22(10), 1345–1359 (2010)

    Google Scholar 

  28. Peng, K.C., Wu, Z., Ernst, J.: Zero-shot deep domain adaptation. In: ECCV (2018)

    Google Scholar 

  29. Pinheiro, P.O.: Unsupervised domain adaptation with similarity learning. In: CVPR (2018)

    Google Scholar 

  30. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. In: ICML, pp. 2988–2997 (2017)

    Google Scholar 

  31. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR, pp. 3723–3732 (2018)

    Google Scholar 

  32. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR (2011)

    Google Scholar 

  33. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. Computer Science (2014)

    Google Scholar 

  34. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: CVPR, pp. 5385–5394 (2017)

    Google Scholar 

  35. Wang, J., Jiang, J.: An unsupervised deep learning framework via integrated optimization of representation learning and GMM-based modeling. In: ACCV, vol. 11361, pp. 249–265 (2018)

    Google Scholar 

  36. Wang, J., Jiang, J.: Conditional coupled generative adversarial networks for zero-shot domain adaptation. In: ICCV (2019)

    Google Scholar 

  37. Wang, J., Jiang, J.: SA-net: a deep spectral analysis network for image clustering. Neurocomputing 383, 10–23 (2020)

    Article  Google Scholar 

  38. Wang, J., Wang, G.: Hierarchical spatial sum-product networks for action recognition in still images. IEEE Trans. Circuits Syst. Video Techn. 28(1), 90–100 (2018)

    Article  Google Scholar 

  39. Wang, J., Wang, Z., Tao, D., See, S., Wang, G.: Learning common and specific features for RGB-D semantic segmentation with deconvolutional networks. In: ECCV, pp. 664–679 (2016)

    Google Scholar 

  40. Yan, H., Ding, Y., Li, P., Wang, Q., Xu, Y., Zuo, W.: Mind the class weight bias: weighted maximum mean discrepancy for unsupervised domain adaptation. In: IEEE, pp. 945–954 (2017)

    Google Scholar 

  41. Yang, Y., Hospedales, T.: Zero-shot domain adaptation via kernel regression on the grassmannian (2015). https://doi.org/10.5244/C.29.DIFFCV.1

  42. Yao, T., Pan, Y., Ngo, C.W., Li, H., Tao, M.: Semi-supervised domain adaptation with subspace learning for visual recognition. In: CVPR (2015)

    Google Scholar 

  43. Zhong, Z., Zheng, L., Luo, Z., Li, S., Yang, Y.: Invariance matters: Exemplar memory for domain adaptive person re-identification. In: CVPR (2019)

    Google Scholar 

  44. Zhu, P., Wang, H., Saligrama, V.: Learning classifiers for target domain with limited or no labels. In: ICML, pp. 7643–7653 (2019)

    Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the financial support from: (i) Natural Science Foundation China (NSFC) under the Grant no. 61620106008; (ii) Natural Science Foundation China (NSFC) under the Grant no. 61802266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Jiang, J. (2020). Adversarial Learning for Zero-Shot Domain Adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12366. Springer, Cham. https://doi.org/10.1007/978-3-030-58589-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58589-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58588-4

  • Online ISBN: 978-3-030-58589-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics