Abstract
Zero-shot domain adaptation (ZSDA) is a category of domain adaptation problems where neither data sample nor label is available for parameter learning in the target domain. With the hypothesis that the shift between a given pair of domains is shared across tasks, we propose a new method for ZSDA by transferring domain shift from an irrelevant task (IrT) to the task of interest (ToI). Specifically, we first identify an IrT, where dual-domain samples are available, and capture the domain shift with a coupled generative adversarial networks (CoGAN) in this task. Then, we train a CoGAN for the ToI and restrict it to carry the same domain shift as the CoGAN for IrT does. In addition, we introduce a pair of co-training classifiers to regularize the training procedure of CoGAN in the ToI. The proposed method not only derives machine learning models for the non-available target-domain data, but also synthesizes the data themselves. We evaluate the proposed method on benchmark datasets and achieve the state-of-the-art performances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)
Chen, Y., Lin, Y., Yang, M., Huang, J.: Crdoco: pixel-level domain transfer with cross-domain consistency. In: CVPR, pp. 1791–1800 (2019)
Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: an extension of MNIST to handwritten letters. arXiv (2017)
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)
Ding, Z., Fu, Y.: Deep domain generalization with structured low-rank constraint. IEEE Trans. Image Process. 27(1), 304–313 (2018)
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML, vol. 37, pp. 1180–1189 (2015)
Ghassami, A., Kiyavash, N., Huang, B., Zhang, K.: Multi-domain causal structure learning in linear systems. In: NeurIPS, pp. 6269–6279 (2018)
Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: ICCV (2015)
Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)
Grother, P., Hanaoka, K.: NIST special database 19 handprinted forms and characters database. In: National Institute of Standards and Technology (2016)
Haeusser, P., Frerix, T., Mordvintsev, A., Cremers, D.: Associative domain adaptation. In: ICCV, pp. 2784–2792 (2017)
Han, X., Kashif, R., Roland, V.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Khosla, A., Zhou, T., Malisiewicz, T., Efros, A.A., Torralba, A.: Undoing the damage of dataset bias. In: ECCV (2012)
Kodirov, E., Xiang, T., Fu, Z., Gong, S.: Unsupervised domain adaptation for zero-shot learning. In: ICCV (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1106–1114 (2012)
Kumagai, A., Iwata, T.: Zero-shot domain adaptation without domain semantic descriptors. CoRR abs/1807.02927 (2018)
Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: ICCV (2017)
Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: Meta-learning for domain generalization. In: AAAI (2018)
Li, Y., et al.: Deep domain generalization via conditional invariant adversarial networks. In: ECCV (2018)
Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: NIPS (2016)
Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: NIPS, pp. 136–144 (2016)
Lopez-Paz, D., Hernández-Lobato, J., Schölkopf, B.: Semi-supervised domain adaptation with non-parametric copulas. In: NIPS (2012)
Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation. In: CVPR (2019)
Lécun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE (1998)
Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: ICML (2013)
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE TKDE 22(10), 1345–1359 (2010)
Peng, K.C., Wu, Z., Ernst, J.: Zero-shot deep domain adaptation. In: ECCV (2018)
Pinheiro, P.O.: Unsupervised domain adaptation with similarity learning. In: CVPR (2018)
Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. In: ICML, pp. 2988–2997 (2017)
Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR, pp. 3723–3732 (2018)
Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR (2011)
Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. Computer Science (2014)
Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: CVPR, pp. 5385–5394 (2017)
Wang, J., Jiang, J.: An unsupervised deep learning framework via integrated optimization of representation learning and GMM-based modeling. In: ACCV, vol. 11361, pp. 249–265 (2018)
Wang, J., Jiang, J.: Conditional coupled generative adversarial networks for zero-shot domain adaptation. In: ICCV (2019)
Wang, J., Jiang, J.: SA-net: a deep spectral analysis network for image clustering. Neurocomputing 383, 10–23 (2020)
Wang, J., Wang, G.: Hierarchical spatial sum-product networks for action recognition in still images. IEEE Trans. Circuits Syst. Video Techn. 28(1), 90–100 (2018)
Wang, J., Wang, Z., Tao, D., See, S., Wang, G.: Learning common and specific features for RGB-D semantic segmentation with deconvolutional networks. In: ECCV, pp. 664–679 (2016)
Yan, H., Ding, Y., Li, P., Wang, Q., Xu, Y., Zuo, W.: Mind the class weight bias: weighted maximum mean discrepancy for unsupervised domain adaptation. In: IEEE, pp. 945–954 (2017)
Yang, Y., Hospedales, T.: Zero-shot domain adaptation via kernel regression on the grassmannian (2015). https://doi.org/10.5244/C.29.DIFFCV.1
Yao, T., Pan, Y., Ngo, C.W., Li, H., Tao, M.: Semi-supervised domain adaptation with subspace learning for visual recognition. In: CVPR (2015)
Zhong, Z., Zheng, L., Luo, Z., Li, S., Yang, Y.: Invariance matters: Exemplar memory for domain adaptive person re-identification. In: CVPR (2019)
Zhu, P., Wang, H., Saligrama, V.: Learning classifiers for target domain with limited or no labels. In: ICML, pp. 7643–7653 (2019)
Acknowledgment
The authors wish to acknowledge the financial support from: (i) Natural Science Foundation China (NSFC) under the Grant no. 61620106008; (ii) Natural Science Foundation China (NSFC) under the Grant no. 61802266.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, J., Jiang, J. (2020). Adversarial Learning for Zero-Shot Domain Adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12366. Springer, Cham. https://doi.org/10.1007/978-3-030-58589-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-58589-1_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58588-4
Online ISBN: 978-3-030-58589-1
eBook Packages: Computer ScienceComputer Science (R0)