Skip to main content

JSTASR: Joint Size and Transparency-Aware Snow Removal Algorithm Based on Modified Partial Convolution and Veiling Effect Removal

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12366))

Included in the following conference series:

Abstract

Snow removal usually affects the performance of computer vision. Comparing with other atmospheric phenomenon (e.g., haze and rain), snow is more complicated due to its transparency, various size, and accumulation of veiling effect, which make single image de-snowing more challenging. In this paper, first, we reformulate the snow model. Different from that in the previous works, in the proposed snow model, the veiling effect is included. Second, a novel joint size and transparency-aware snow removal algorithm called JSTASR is proposed. It can classify snow particles according to their sizes and conduct snow removal in different scales. Moreover, to remove the snow with different transparency, the transparency-aware snow removal is developed. It can address both transparent and non-transparent snow particles by applying the modified partial convolution. Experiments show that the proposed method achieves significant improvement on both synthetic and real-world datasets and is very helpful for object detection on snow images.

W.-T. Chen—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The dataset can be downloaded from our project page.

  2. 2.

    The input size of DesnowNet in this experiment is &\(480\times 480\)&.

References

  1. Berman, D., Avidan, S., et al.: Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674–1682 (2016)

    Google Scholar 

  2. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chen, W.T., Ding, J.J., Kuo, S.Y.: PMS-Net: robust haze removal based on patch map for single images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11681–11689 (2019)

    Google Scholar 

  4. Chen, W.T., Fang, H.Y., Ding, J.J., Kuo, S.Y.: PMHLD: Patch map based hybrid learning dehazenet for single image haze removal. IEEE Trans. Image Process. (2020)

    Google Scholar 

  5. Chen, W.T., Yuan, S.Y., Tsai, G.C., Wang, H.C., Kuo, S.Y.: Color channel-based smoke removal algorithm using machine learning for static images. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 2855–2859. IEEE (2018)

    Google Scholar 

  6. Eigen, D., Krishnan, D., Fergus, R.: Restoring an image taken through a window covered with dirt or rain. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 633–640 (2013)

    Google Scholar 

  7. Ferzli, R., Karam, L.J.: A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Trans. Image Process. 18(4), 717–728 (2009)

    Article  MathSciNet  Google Scholar 

  8. Hautière, N., Tarel, J.P., Aubert, D., Dumont, E.: Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal. Stereology 27(2), 87–95 (2008)

    Article  MathSciNet  Google Scholar 

  9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  10. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  11. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: European Conference on Computer Vision, pp. 694–711 (2016)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: All-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4770–4778 (2017)

    Google Scholar 

  14. Li, B., et al.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2018)

    Article  MathSciNet  Google Scholar 

  15. Li, Z., et al.: Single image snow removal via composition generative adversarial networks. IEEE Access 7, 25016–25025 (2019)

    Article  Google Scholar 

  16. Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 85–100 (2018)

    Google Scholar 

  17. Liu, Y.F., Jaw, D.W., Huang, S.C., Hwang, J.N.: DesnowNet: context-aware deep network for snow removal. IEEE Trans. Image Process. 27(6), 3064–3073 (2018)

    Article  MathSciNet  Google Scholar 

  18. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  19. Pei, S.C., Tsai, Y.T., Lee, C.Y.: Removing rain and snow in a single image using saturation and visibility features. In: 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–6 (2014)

    Google Scholar 

  20. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters-improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361 (2017)

    Google Scholar 

  21. Qian, R., Tan, R.T., Yang, W., Su, J., Liu, J.: Attentive generative adversarial network for raindrop removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2482–2491 (2018)

    Google Scholar 

  22. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10

    Chapter  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  25. Tarel, J.P., Hautiere, N.: Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2201–2208 (2009)

    Google Scholar 

  26. Voronin, V., Semenishchev, E., Zhdanova, M., Sizyakin, R., Zelenskii, A.: Rain and snow removal using multi-guided filter and anisotropic gradient in the quaternion framework. In: Artificial Intelligence and Machine Learning in Defense Applications, vol. 11169, p. 111690 (2019)

    Google Scholar 

  27. Wang, Y., Liu, S., Chen, C., Zeng, B.: A hierarchical approach for rain or snow removing in a single color image. IEEE Trans. Image Process. 26(8), 3936–3950 (2017)

    Article  MathSciNet  Google Scholar 

  28. Xu, J., Zhao, W., Liu, P., Tang, X.: An improved guidance image based method to remove rain and snow in a single image. Comput. Inf. Sci. 5(3), 49 (2012)

    Google Scholar 

  29. Yang, D., Sun, J.: Proximal dehaze-net: a prior learning-based deep network for single image dehazing. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 702–717 (2018)

    Google Scholar 

  30. Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017)

    Google Scholar 

  31. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image in painting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

  32. Yu, S., et al.: Content-adaptive rain and snow removal algorithms for single image. In: International Symposium on Neural Networks, pp. 439–448 (2014)

    Google Scholar 

  33. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2018)

    Google Scholar 

  34. Zhang, Z., Liu, W., Ma, H., Liu, X.: Going clear from misty rain in dark channel guided network

    Google Scholar 

  35. Zheng, X., Liao, Y., Guo, W., Fu, X., Ding, X.: Single-image-based rain and snow removal using multi-guided filter. In: International Conference on Neural Information Processing, pp. 258–265 (2013)

    Google Scholar 

  36. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sy-Yen Kuo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 2586 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, WT., Fang, HY., Ding, JJ., Tsai, CC., Kuo, SY. (2020). JSTASR: Joint Size and Transparency-Aware Snow Removal Algorithm Based on Modified Partial Convolution and Veiling Effect Removal. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12366. Springer, Cham. https://doi.org/10.1007/978-3-030-58589-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58589-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58588-4

  • Online ISBN: 978-3-030-58589-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics