Skip to main content

Segmentations-Leak: Membership Inference Attacks and Defenses in Semantic Image Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12368))

Included in the following conference series:

Abstract

Today’s success of state of the art methods for semantic segmentation is driven by large datasets. Data is considered an important asset that needs to be protected, as the collection and annotation of such datasets comes at significant efforts and associated costs. In addition, visual data might contain private or sensitive information, that makes it equally unsuited for public release. Unfortunately, recent work on membership inference in the broader area of adversarial machine learning and inference attacks on machine learning models has shown that even black box classifiers leak information on the dataset that they were trained on. We show that such membership inference attacks can be successfully carried out on complex, state of the art models for semantic segmentation. In order to mitigate the associated risks, we also study a series of defenses against such membership inference attacks and find effective counter measures against the existing risks with little effect on the utility of the segmentation method. Finally, we extensively evaluate our attacks and defenses on a range of relevant real-world datasets: Cityscapes, BDD100K, and Mapillary Vistas. Our source code and demos are available at https://github.com/SSAW14/segmentation_membership_inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  2. Antol, S., et al.: VQA: visual question answering. In: ICCV (2015)

    Google Scholar 

  3. Backes, M., Berrang, P., Humbert, M., Manoharan, P.: Membership privacy in microrna-based studies. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (2016)

    Google Scholar 

  4. Chen, L.C., et al.: Searching for efficient multi-scale architectures for dense image prediction. In: NeurIPS (2018)

    Google Scholar 

  5. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  6. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  8. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  9. van Tilborg, H.C.A., Jajodia, S. (eds.): Encyclopedia of Cryptography and Security. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-5906-5

    Book  MATH  Google Scholar 

  10. Fischer, V., Kumar, M.C., Metzen, J.H., Brox, T.: Adversarial examples for semantic image segmentation. arXiv preprint arXiv:1703.01101 (2017)

  11. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  13. He, Y., Chiu, W.C., Keuper, M., Fritz, M.: STD2P: RGBD semantic segmentation using spatio-temporal data-driven pooling. In: CVPR (2017)

    Google Scholar 

  14. Jayaraman, B., Evans, D.: Evaluating differentially private machine learning in practice. In: 28th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 2019), pp. 1895–1912 (2019)

    Google Scholar 

  15. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  16. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: CVPR (2017)

    Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  18. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: CVPR (2017)

    Google Scholar 

  19. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: CVPR (2016)

    Google Scholar 

  20. Nasr, M., Shokri, R., Houmansadr, A.: Machine learning with membership privacy using adversarial regularization. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (2018)

    Google Scholar 

  21. Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: ICCV (2017)

    Google Scholar 

  22. Oh, S.J., Schiele, B., Fritz, M.: Towards reverse-engineering black-box neural networks. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 121–144. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_7

    Chapter  Google Scholar 

  23. Oh, S.J., Fritz, M., Schiele, B.: Adversarial image perturbation for privacy protection a game theory perspective. In: ICCV (2017)

    Google Scholar 

  24. Orekondy, T., Schiele, B., Fritz, M.: Knockoff Nets: stealing functionality of black-box models. In: CVPR (2019)

    Google Scholar 

  25. Pyrgelis, A., Troncoso, C., De Cristofaro, E.: Knock knock, who’s there? membership inference on aggregate location data. NDSS (2018)

    Google Scholar 

  26. Sablayrolles, A., Douze, M., Schmid, C., Ollivier, Y., Jegou, H.: White-box vs black-box: Bayes optimal strategies for membership inference. In: ICML (2019)

    Google Scholar 

  27. Salem, A., Zhang, Y., Humbert, M., Fritz, M., Backes, M.: Ml-leaks: Model and data independent membership inference attacks and defenses on machine learning models. In: NDSS (2019)

    Google Scholar 

  28. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015)

    Google Scholar 

  29. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: IEEE Symposium on Security and Privacy (SP) (2017)

    Google Scholar 

  30. Stutz, D., Hein, M., Schiele, B.: Disentangling adversarial robustness and generalization. In: CVPR (2019)

    Google Scholar 

  31. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: ICCV (2017)

    Google Scholar 

  32. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  33. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: ECCV (2018)

    Google Scholar 

  34. Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples for semantic segmentation and object detection. In: ICCV (2017)

    Google Scholar 

  35. Yu, F., et al.: BDD100K: a diverse driving video database with scalable annotation tooling. arXiv preprint arXiv:1805.04687 (2018)

  36. Zhang, T.: Privacy-preserving machine learning through data obfuscation. arXiv preprint arXiv:1807.01860 (2018)

  37. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

  38. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR (2016)

    Google Scholar 

  39. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE T-PAMI 40, 1452–1464 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Apratim Bhattacharyya, Hui-Po Wang and Zhongjie Yu for their valuable feedback to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang He .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 36419 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Y., Rahimian, S., Schiele, B., Fritz, M. (2020). Segmentations-Leak: Membership Inference Attacks and Defenses in Semantic Image Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12368. Springer, Cham. https://doi.org/10.1007/978-3-030-58592-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58592-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58591-4

  • Online ISBN: 978-3-030-58592-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics