Abstract
We present the first approach to volumetric performance capture and novel-view rendering at real-time speed from monocular video, eliminating the need for expensive multi-view systems or cumbersome pre-acquisition of a personalized template model. Our system reconstructs a fully textured 3D human from each frame by leveraging Pixel-Aligned Implicit Function (PIFu). While PIFu achieves high-resolution reconstruction in a memory-efficient manner, its computationally expensive inference prevents us from deploying such a system for real-time applications. To this end, we propose a novel hierarchical surface localization algorithm and a direct rendering method without explicitly extracting surface meshes. By culling unnecessary regions for evaluation in a coarse-to-fine manner, we successfully accelerate the reconstruction by two orders of magnitude from the baseline without compromising the quality. Furthermore, we introduce an Online Hard Example Mining (OHEM) technique that effectively suppresses failure modes due to the rare occurrence of challenging examples. We adaptively update the sampling probability of the training data based on the current reconstruction accuracy, which effectively alleviates reconstruction artifacts. Our experiments and evaluations demonstrate the robustness of our system to various challenging angles, illuminations, poses, and clothing styles. We also show that our approach compares favorably with the state-of-the-art monocular performance capture. Our proposed approach removes the need for multi-view studio settings and enables a consumer-accessible solution for volumetric capture.
R. Li and Y. Xiu—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alp Güler, R., Neverova, N., Kokkinos, I.: DensePose: dense human pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7297–7306 (2018)
Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE: shape completion and animation of people. ACM Trans. Graph. 24(3), 408–416 (2005)
Beeler, T., et al.: High-quality passive facial performance capture using anchor frames. ACM Trans. Graph. (TOG) 30(4), 75 (2011)
Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: European Conference on Computer Vision, pp. 561–578 (2016)
Cao, C., Weng, Y., Zhou, S., Tong, Y., Zhou, K.: FaceWarehouse: a 3D facial expression database for visual computing. IEEE Trans. Vis. Comput. Graph. 20(3), 413–425 (2013)
Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5939–5948 (2019)
Collet, A., et al.: High-quality streamable free-viewpoint video. ACM Trans. Graph. 34(4), 69 (2015)
De Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P., Thrun, S.: Performance capture from sparse multi-view video. ACM Trans. Graph. 27(3), 98 (2008)
De Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., Courville, A.C.: Modulating early visual processing by language. In: Advances in Neural Information Processing Systems, pp. 6594–6604 (2017)
Dou, M., et al.: Fusion4D: real-time performance capture of challenging scenes. ACM Trans. Graph. 35(4), 114 (2016)
Dumoulin, V., et al.: Adversarially learned inference. arXiv preprint arXiv:1606.00704 (2016)
Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2002–2011 (2018)
Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)
Guan, P., Weiss, A., Balan, A.O., Black, M.J.: Estimating human shape and pose from a single image. In: IEEE International Conference on Computer Vision, pp. 1381–1388 (2009)
Guo, K., et al.: The relightables: volumetric performance capture of humans with realistic relighting. ACM Trans. Graph. 38(6) (2019). https://doi.org/10.1145/3355089.3356571
Guo, K., Xu, F., Yu, T., Liu, X., Dai, Q., Liu, Y.: Real-time geometry, albedo, and motion reconstruction using a single RGB-D camera. ACM Trans. Graph. (TOG) 36(3), 32 (2017)
Habermann, M., Xu, W., Zollhoefer, M., Pons-Moll, G., Theobalt, C.: LiveCap: real-time human performance capture from monocular video. ACM Trans. Graph. (TOG) 38(2), 14 (2019)
Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T.: ARCH: animatable reconstruction of clothed humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3093–3102 (2020)
Innmann, M., Zollhöfer, M., Nießner, M., Theobalt, C., Stamminger, M.: VolumeDeform: real-time volumetric non-rigid reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 362–379. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_22
Izadi, S., et al.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 559–568 (2011)
Jackson, A.S., Manafas, C., Tzimiropoulos, G.: 3D human body reconstruction from a single image via volumetric regression. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11132, pp. 64–77. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11018-5_6
Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)
Joo, H., Simon, T., Sheikh, Y.: Total capture: a 3D deformation model for tracking faces, hands, and bodies. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8320–8329 (2018)
Kanade, T., Rander, P., Narayanan, P.: Virtualized reality: constructing virtual worlds from real scenes. IEEE Multimed. 4(1), 34–47 (1997)
Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kocabas, M., Athanasiou, N., Black, M.J.: Vibe: video inference for human body pose and shape estimation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2020
Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Kowdle, A., et al.: The need 4 speed in real-time dense visual tracking. In: SIGGRAPH Asia 2018 Technical Papers, p. 220. ACM (2018)
Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M.J., Gehler, P.V.: Unite the people: closing the loop between 3D and 2D human representations. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6050–6059 (2017)
Lazova, V., Insafutdinov, E., Pons-Moll, G.: 360-degree textures of people in clothing from a single image. In: International Conference on 3D Vision (3DV), September 2019
Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. (TOG) 36(6), 194 (2017)
Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., Cui, Z.: DIST: rendering deep implicit signed distance function with differentiable sphere tracing. arXiv preprint arXiv:1911.13225 (2019)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34(6), 248 (2015)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)
Loshchilov, I., Hutter, F.: Online batch selection for faster training of neural networks. arXiv preprint arXiv:1511.06343 (2015)
Matusik, W., Buehler, C., Raskar, R., Gortler, S.J., McMillan, L.: Image-based visual hulls. In: ACM SIGGRAPH, pp. 369–374 (2000)
Mehta, D., et al.: VNect: real-time 3D human pose estimation with a single RGB camera. ACM Trans. Graph. 36(4), 44:1–44:14 (2017)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. arXiv preprint arXiv:1812.03828 (2018)
Natsume, R., et al.: SiCloPe: silhouette-based clothed people. In: CVPR, pp. 4480–4490 (2019)
Newcombe, R.A., Fox, D., Seitz, S.M.: DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 343–352 (2015)
Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 127–136 (2011)
Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29
Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: Learning implicit 3D representations without 3D supervision. arXiv preprint arXiv:1912.07372 (2019)
Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.: Texture fields: learning texture representations in function space. In: The IEEE International Conference on Computer Vision (ICCV), October 2019
Orts-Escolano, S., et al.: Holoportation: virtual 3D teleportation in real-time. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 741–754 (2016)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. arXiv preprint arXiv:1901.05103 (2019)
Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10975–10985 (2019)
Popa, A.I., Zanfir, M., Sminchisescu, C.: Deep multitask architecture for integrated 2D and 3D human sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6289–6298 (2017)
Renderpeople (2018). https://renderpeople.com/3d-people
Rogez, G., Weinzaepfel, P., Schmid, C.: LCR-Net++: multi-person 2D and 3D pose detection in natural images. arXiv preprint arXiv:1803.00455 (2018)
Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 36(6), 245 (2017)
Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFU: pixel-aligned implicit function for high-resolution clothed human digitization. In: ICCV (2019)
Saito, S., Simon, T., Saragih, J., Joo, H.: PIFuHD: multi-level pixel-aligned implicit function for high-resolution 3D human digitization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 84–93 (2020)
Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 761–769 (2016)
Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Moreno-Noguer, F.: Fracking deep convolutional image descriptors. arXiv preprint arXiv:1412.6537 (2014)
Starck, J., Hilton, A.: Surface capture for performance-based animation. IEEE Comput. Graph. Appl. 27(3), 21–31 (2007)
Sun, K., et al.: High-resolution representations for labeling pixels and regions. arXiv preprint arXiv:1904.04514 (2019)
Tang, D., et al.: Real-time compression and streaming of 4D performances. In: SIGGRAPH Asia 2018 Technical Papers, p. 256. ACM (2018)
Varol, G., et al.: BodyNet: volumetric inference of 3D human body shapes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 20–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_2
Vlasic, D., Baran, I., Matusik, W., Popović, J.: Articulated mesh animation from multi-view silhouettes. ACM Trans. Graph. 27(3), 97 (2008)
Vlasic, D., et al.: Dynamic shape capture using multi-view photometric stereo. ACM Trans. Graph. 28(5), 174 (2009)
Waschbüsch, M., Würmlin, S., Cotting, D., Sadlo, F., Gross, M.: Scalable 3D video of dynamic scenes. Vis. Comput. 21(8), 629–638 (2005)
Wu, C., Stoll, C., Valgaerts, L., Theobalt, C.: On-set performance capture of multiple actors with a stereo camera. ACM Trans. Graph. 32(6), 161 (2013)
Xiang, D., Joo, H., Sheikh, Y.: Monocular total capture: posing face, body, and hands in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10965–10974 (2019)
Xu, W., et al.: MonoPerfCap: human performance capture from monocular video. ACM Trans. Graph. 37(2), 27:1–27:15 (2018)
Yamaguchi, S., et al.: High-fidelity facial reflectance and geometry inference from an unconstrained image. ACM Trans. Graph. 37(4), 162 (2018)
Ye, G., Liu, Y., Hasler, N., Ji, X., Dai, Q., Theobalt, C.: Performance capture of interacting characters with handheld kinects. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 828–841. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_59
Yu, T., et al.: DoubleFusion: real-time capture of human performances with inner body shapes from a single depth sensor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7287–7296 (2018)
Zhang, C., Pujades, S., Black, M.J., Pons-Moll, G.: Detailed, accurate, human shape estimation from clothed 3D scan sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4191–4200 (2017)
Zhang, P., Siu, K., Zhang, J., Liu, C.K., Chai, J.: Leveraging depth cameras and wearable pressure sensors for full-body kinematics and dynamics capture. ACM Trans. Graph. (TOG) 33(6), 221 (2014)
Zheng, Z., et al.: HybridFusion: real-time performance capture using a single depth sensor and sparse IMUs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 389–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_24
Zheng, Z., Yu, T., Wei, Y., Dai, Q., Liu, Y.: DeepHuman: 3D human reconstruction from a single image. In: The IEEE International Conference on Computer Vision (ICCV), October 2019
Zhou, K., Gong, M., Huang, X., Guo, B.: Data-parallel octrees for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 17(5), 669–681 (2010)
Zollhöfer, M., et al.: Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. 33(4), 156 (2014)
Acknowledgement
This research was funded by in part by the ONR YIP grant N00014-17-S-FO14, the CONIX Research Center, a Semiconductor Research Corporation (SRC) program sponsored by DARPA, the Andrew and Erna Viterbi Early Career Chair, the U.S. Army Research Laboratory (ARL) under contract number W911NF-14-D-0005, Adobe, and Sony.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, R., Xiu, Y., Saito, S., Huang, Z., Olszewski, K., Li, H. (2020). Monocular Real-Time Volumetric Performance Capture. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12368. Springer, Cham. https://doi.org/10.1007/978-3-030-58592-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-58592-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58591-4
Online ISBN: 978-3-030-58592-1
eBook Packages: Computer ScienceComputer Science (R0)