Skip to main content

Inertial Safety from Structured Light

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12368))

Included in the following conference series:

Abstract

We present inertial safety maps (ISM), a novel scene representation designed for fast detection of obstacles in scenarios involving camera or scene motion, such as robot navigation and human-robot interaction. ISM is a motion-centric representation that encodes both scene geometry and motion; different camera motion results in different ISMs for the same scene. We show that ISM can be estimated with a two-camera stereo setup without explicitly recovering scene depths, by measuring differential changes in disparity over time. We develop an active, single-shot structured light-based approach for robustly measuring ISM in challenging scenarios with textureless objects and complex geometries. The proposed approach is computationally light-weight, and can detect intricate obstacles (e.g., thin wire fences) by processing high-resolution images at high-speeds with limited computational resources. ISM can be readily integrated with depth and range maps as a complementary scene representation, potentially enabling high-speed navigation and robotic manipulation in extreme environments, with minimal device complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In contrast, a 3D map is a motion-invariant scene representation.

  2. 2.

    The method is “single-shot” in that we compute N ISMs from \(N\,+\,1\) frames (single-shot except one initial frame).

  3. 3.

    It is possible to recover absolute phase using a unit-frequency sinusoid, however at a considerably lower phase-recovery precision than high-frequency sinusoids.

References

  1. Azevedo, S., McEwan, T.E.: Micropower impulse radar. IEEE Potentials 16(2), 15–20 (1997)

    Article  Google Scholar 

  2. Bartels, J.R., Wang, J.: Agile depth sensing using triangulation light curtains. In: International Conference on Computer Vision (ICCV), pp. 7899–7907. IEEE (2019)

    Google Scholar 

  3. Čech, J., Sanchez-Riera, J., Horaud, R.: Scene flow estimation by growing correspondence seeds. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3129–3136. IEEE (2011)

    Google Scholar 

  4. Coombs, D., Herman, M., Hong, T.H., Nashman, M.: Real-time obstacle avoidance using central flow divergence, and peripheral flow. IEEE Trans. Robot. Autom. 14(1), 49–59 (1998)

    Article  Google Scholar 

  5. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  6. Fanello, S.R., et al.: HyperDepth: learning depth from structured light without matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 5441–5450. IEEE, June 2016

    Google Scholar 

  7. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Comput. Vis. (IJCV) 70(1), 41–54 (2006)

    Article  Google Scholar 

  8. Flacco, F., Kroger, T., De Luca, A., Khatib, O.: A depth space approach to human-robot collision avoidance. In: IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, pp. 338–345. IEEE, May 2012

    Google Scholar 

  9. Furukawa, R., Sagawa, R., Kawasaki, H.: Depth estimation using structured light flow — analysis of projected pattern flow on an object’s surface. In: IEEE International Conference on Computer Vision (ICCV), pp. 4650–4658. IEEE, October 2017

    Google Scholar 

  10. Gorthi, S.S., Rastogi, P.: Fringe projection techniques: whither we are? Opt. Lasers Eng. 48(2), 133–140 (2010)

    Article  Google Scholar 

  11. Green, W.E., Oh, P.Y.: Optic-flow-based collision avoidance. IEEE Robot. Autom. Mag. 15(1), 96–103 (2008)

    Article  Google Scholar 

  12. Grewal, H., Matthews, A., Tea, R., George, K.: LIDAR-based autonomous wheelchair. In: IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, pp. 1–6. IEEE (2017)

    Google Scholar 

  13. Gupta, M., Nayar, S.K.: Micro phase shifting. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, pp. 813–820. IEEE, June 2012

    Google Scholar 

  14. Gupta, M., Yin, Q., Nayar, S.K.: Structured light in sunlight. In: IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, pp. 545–552. IEEE, December 2013

    Google Scholar 

  15. Hansard, M., Lee, S., Choi, O., Horaud, R.: Time of Flight Cameras: Principles, Methods, and Applications. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4658-2

    Book  Google Scholar 

  16. Heide, F., Heidrich, W., Hullin, M., Wetzstein, G.: Doppler time-of-flight imaging. ACM Trans. Graph. 34(4), 1–11 (2015)

    Article  Google Scholar 

  17. Heinzmann, J., Zelinsky, A.: Quantitative safety guarantees for physical human-robot interaction. Int. J. Robot. Res. 22(7–8), 479–504 (2003)

    Article  Google Scholar 

  18. Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 807–814, San Diego, CA, USA. IEEE (2005)

    Google Scholar 

  19. Horn, B., Fang, Y.F.Y., Masaki, I.: Time to contact relative to a planar surface. In: IEEE Intelligent Vehicles Symposium, pp. 68–74. IEEE (2007)

    Google Scholar 

  20. Ikuta, K., Ishii, H., Nokata, M.: Safety evaluation method of design and control for human-care robots. In: International Symposium on Micromechatronics and Human Science (MHS), pp. 119–127. IEEE (2000)

    Google Scholar 

  21. Kawasaki, H., Furukawa, R., Sagawa, R., Yagi, Y.: Dynamic scene shape reconstruction using a single structured light pattern. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8, Anchorage, AK, USA. IEEE, June 2008

    Google Scholar 

  22. Lacevic, B., Rocco, P.: Kinetostatic danger field - a novel safety assessment for human-robot interaction. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, pp. 2169–2174. IEEE, October 2010

    Google Scholar 

  23. Zhang, L., Curless, B., Seitz, S.: Rapid shape acquisition using color structured light and multi-pass dynamic programming. In: 3D Data Processing Visualization and Transmission, pp. 24–36. IEEE Computur Society (2002)

    Google Scholar 

  24. Lin, J.F., Su, X.Y.: Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes. Opt. Eng. 34(11), 3297 (1995)

    Article  Google Scholar 

  25. Liu, C., Tomizuka, M.: Algorithmic safety measures for intelligent industrial co-robots. In: IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, pp. 3095–3102. IEEE, May 2016

    Google Scholar 

  26. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence (IJCAI), Vancouver, British Columbia, Canada, pp. 674–679 (1981)

    Google Scholar 

  27. Marvel, J.A.: Performance metrics of speed and separation monitoring in shared workspaces. IEEE Trans. Autom. Sci. Eng. 10(2), 405–414 (2013)

    Article  Google Scholar 

  28. Muller, D., Pauli, J., Nunn, C., Gormer, S., Muller-Schneiders, S.: Time to contact estimation using interest points. In: International IEEE Conference on Intelligent Transportation Systems (ITSC), St. Louis, pp. 1–6. IEEE, October 2009

    Google Scholar 

  29. Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  30. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25(3), 935–944 (2006)

    Article  Google Scholar 

  31. O’Toole, M., Achar, S., Narasimhan, S.G., Kutulakos, K.N.: Homogeneous codes for energy-efficient illumination and imaging. ACM Trans. Graph. 34(4), 1–13 (2015)

    Article  Google Scholar 

  32. O’Toole, M., Mather, J., Kutulakos, K.N.: 3D shape and indirect appearance by structured light transport. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3246–3253. IEEE (2014)

    Google Scholar 

  33. Pagès, J., Salvi, J., Collewet, C., Forest, J.: Optimised De Bruijn patterns for one-shot shape acquisition. Image Vis. Comput. 23(8), 707–720 (2005)

    Article  Google Scholar 

  34. Sagawa, R., Ota, Y., Yagi, Y., Furukawa, R., Asada, N., Kawasaki, H.: Dense 3D reconstruction method using a single pattern for fast moving object. In: IEEE International Conference on Computer Vision (ICCV), pp. 1779–1786. IEEE, September 2009

    Google Scholar 

  35. Min, S.D., Kim, J.K., Shin, H.S., Yun, Y.H., Lee, C.K., Lee, M.: Noncontact respiration rate measurement system using an ultrasonic proximity sensor. IEEE Sens. J. 10(11), 1732–1739 (2010)

    Article  Google Scholar 

  36. Takeda, M., Ina, H., Kobayashi, S.: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72(1), 156 (1982)

    Article  Google Scholar 

  37. Takeda, M., Mutoh, K.: Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt. 22(24), 3977 (1983)

    Article  Google Scholar 

  38. Van der Jeught, S., Dirckx, J.J.: Real-time structured light profilometry: a review. Opt. Lasers Engineering 87, 18–31 (2016)

    Article  Google Scholar 

  39. Vo, M., Narasimhan, S.G., Sheikh, Y.: Separating texture and illumination for single-shot structured light reconstruction. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 433–440. IEEE, June 2014

    Google Scholar 

  40. Wang, J., Bartels, J., Whittaker, W., Sankaranarayanan, A.C., Narasimhan, S.G.: Programmable triangulation light curtains. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 20–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_2

    Chapter  Google Scholar 

  41. Watanabe, Y., Sakaue, F., Sato, J.: Time-to-contact from image intensity. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp. 4176–4183. IEEE, June 2015

    Google Scholar 

  42. Yang, Q., Wang, L., Ahuja, N.: A constant-space belief propagation algorithm for stereo matching. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA, pp. 1458–1465. IEEE, June 2010

    Google Scholar 

  43. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimedia 19(2), 4–10 (2012)

    Article  Google Scholar 

  44. Zinn, M., Khatib, O., Roth, B., Salisbury, J.: Playing it safe. IEEE Robot. Autom. Mag. 11(2), 12–21 (2004)

    Article  Google Scholar 

Download references

Acknowledgement

This research is supported in part by the DARPA REVEAL program and a Wisconsin Alumni Research Foundation (WARF) Fall Competition award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Gupta .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 10528 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, S., Gupta, M. (2020). Inertial Safety from Structured Light. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12368. Springer, Cham. https://doi.org/10.1007/978-3-030-58592-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58592-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58591-4

  • Online ISBN: 978-3-030-58592-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics