Skip to main content

SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12370))

Included in the following conference series:

  • 4238 Accesses

Abstract

Multi-class 3D object detection aims to localize and classify objects of multiple categories from point clouds. Due to the nature of point clouds, i.e. unstructured, sparse and noisy, some features benefitting multi-class discrimination are underexploited, such as shape information. In this paper, we propose a novel 3D shape signature to explore the shape information from point clouds. By incorporating operations of symmetry, convex hull and Chebyshev fitting, the proposed shape signature is not only compact and effective but also robust to the noise, which serves as a soft constraint to improve the feature capability of multi-class discrimination. Based on the proposed shape signature, we develop the shape signature networks (SSN) for 3D object detection, which consist of pyramid feature encoding part, shape-aware grouping heads and explicit shape encoding objective. Experiments show that the proposed method performs remarkably better than existing methods on two large-scale datasets. Furthermore, our shape signature can act as a plug-and-play component and ablation study shows its effectiveness and good scalability (Source code at SSN and also available at mmdetection3d soon.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://evalai.cloudcv.org/web/challenges/challenge-page/356/overview.

  2. 2.

    https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles.

References

  1. Lyft level 5 dataset. https://level5.lyft.com/dataset/

  2. Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape matching and object recognition. In: Advances in Neural Information Processing Systems, pp. 831–837 (2001)

    Google Scholar 

  3. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027 (2019)

  4. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3D object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2147–2156 (2016)

    Google Scholar 

  5. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1907–1915 (2017)

    Google Scholar 

  6. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24672-5_18

    Chapter  Google Scholar 

  7. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Rob. Res. 32, 1231–1237 (2013)

    Article  Google Scholar 

  8. Golovinskiy, A., Kim, V.G., Funkhouser, T.: Shape-based recognition of 3D point clouds in urban environments. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2154–2161. IEEE (2009)

    Google Scholar 

  9. Jetley, S., Sapienza, M., Golodetz, S., Torr, P.H.S.: Straight to shapes: real-time detection of encoded shapes. In: CVPR, pp. 4207–4216 (2016)

    Google Scholar 

  10. Johnson, A.E., Hebert, M.: Surface matching for object recognition in complex three-dimensional scenes. Image Vis. Comput. 16(9–10), 635–651 (1998)

    Article  Google Scholar 

  11. Kasaei, S.H., Tomé, A.M., Lopes, L.S., Oliveira, M.: Good: a global orthographic object descriptor for 3D object recognition and manipulation. Pattern Recogn. Lett. 83, 312–320 (2016)

    Article  Google Scholar 

  12. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3D proposal generation and object detection from view aggregation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–8. IEEE (2018)

    Google Scholar 

  13. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)

    Google Scholar 

  14. Li, P., Chen, X., Shen, S.: Stereo R-CNN based 3D object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7644–7652 (2019)

    Google Scholar 

  15. Liang, M., Yang, B., Chen, Y., Hu, R., Urtasun, R.: Multi-task multi-sensor fusion for 3D object detection. In: CVPR, pp. 7337–7345 (2019)

    Google Scholar 

  16. Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor 3D object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 663–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_39

    Chapter  Google Scholar 

  17. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  18. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  19. Liu, L., Lu, J., Xu, C., Tian, Q., Zhou, J.: Deep fitting degree scoring network for monocular 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1057–1066 (2019)

    Google Scholar 

  20. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  21. Marton, Z.C., Pangercic, D., Blodow, N., Beetz, M.: Combined 2D–3D categorization and classification for multimodal perception systems. Int. J. Rob. Res. 30(11), 1378–1402 (2011)

    Article  Google Scholar 

  22. Pham, C.C., Jeon, J.W.: Robust object proposals re-ranking for object detection in autonomous driving using convolutional neural networks. Sig. Process. Image Commun. 53, 110–122 (2017)

    Article  Google Scholar 

  23. Chebyshev polynomials. https://en.wikipedia.org/wiki/chebyshev_polynomials

  24. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep Hough voting for 3D object detection in point clouds. arXiv preprint arXiv:1904.09664 (2019)

  25. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object detection from RGB-D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 918–927 (2018)

    Google Scholar 

  26. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  27. Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the viewpoint feature histogram. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2155–2162. IEEE (2010)

    Google Scholar 

  28. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–779 (2019)

    Google Scholar 

  29. Simonelli, A., Bulò, S.R.R., Porzi, L., López-Antequera, M., Kontschieder, P.: Disentangling monocular 3D object detection. arXiv preprint arXiv:1905.12365 (2019)

  30. Vora, S., Lang, A.H., Helou, B., Beijbom, O.: PointPainting: sequential fusion for 3D object detection. arXiv abs/1911.10150 (2019)

    Google Scholar 

  31. Wang, T., Zhu, X., Lin, D.: Reconfigurable voxels: a new representation for lidar-based point clouds. arXiv preprint arXiv:2004.02724 (2020)

  32. Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.Q.: Pseudo-lidar from visual depth estimation: bridging the gap in 3D object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8445–8453 (2019)

    Google Scholar 

  33. Xu, B., Chen, Z.: Multi-level fusion based 3D object detection from monocular images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2345–2353 (2018)

    Google Scholar 

  34. Xu, D., Anguelov, D., Jain, A.: PointFusion: deep sensor fusion for 3D bounding box estimation. In: CVPR, pp. 244–253 (2017)

    Google Scholar 

  35. Xu, Y., Zhu, X., Shi, J., Zhang, G., Bao, H., Li, H.: Depth completion from sparse lidar data with depth-normal constraints. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2811–2820 (2019)

    Google Scholar 

  36. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)

    Article  Google Scholar 

  37. Yang, B., Liang, M., Urtasun, R.: HDNET: exploiting HD maps for 3D object detection. In: Conference on Robot Learning, pp. 146–155 (2018)

    Google Scholar 

  38. Yang, B., Luo, W., Urtasun, R.: PIXOR: real-time 3D object detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7652–7660 (2018)

    Google Scholar 

  39. Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: STD: sparse-to-dense 3D object detector for point cloud. arXiv preprint arXiv:1907.10471 (2019)

  40. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by the SenseTime Collaborative Grant on Large-scale Multi-modality Analysis (CUHK Agreement No. TS1610626 & No. TS1712093), the General Research Fund (GRF) of Hong Kong (No. 14236516 & No. 14203518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinge Zhu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 404 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, X., Ma, Y., Wang, T., Xu, Y., Shi, J., Lin, D. (2020). SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12370. Springer, Cham. https://doi.org/10.1007/978-3-030-58595-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58595-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58594-5

  • Online ISBN: 978-3-030-58595-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics