Abstract
Blind inpainting is a task to automatically complete visual contents without specifying masks for missing areas in an image. Previous work assumes known missing-region-pattern, limiting the application scope. We instead relax the assumption by defining a new blind inpainting setting, making training a neural system robust against various unknown missing region patterns. Specifically, we propose a two-stage visual consistency network (VCN) to estimate where to fill (via masks) and generate what to fill. In this procedure, the unavoidable potential mask prediction errors lead to severe artifacts in the subsequent repairing. To address it, our VCN predicts semantically inconsistent regions first, making mask prediction more tractable. Then it repairs these estimated missing regions using a new spatial normalization, making VCN robust to mask prediction errors. Semantically convincing and visually compelling content can be generated. Extensive experiments show that our method is effective and robust in blind image inpainting. And our VCN allows for a wide spectrum of applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML, pp. 214–223 (2017)
Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. TOG 28(3), 24 (2009)
Cai, N., Su, Z., Lin, Z., Wang, H., Yang, Z., Ling, B.W.-K.: Blind inpainting using the fully convolutional neural network. The Visual Computer 33(2), 249–261 (2015). https://doi.org/10.1007/s00371-015-1190-z
Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. TIP 13(9), 1200–1212 (2004)
Darabi, S., Shechtman, E., Barnes, C., Goldman, D.B., Sen, P.: Image melding: combining inconsistent images using patch-based synthesis. TOG 31(4), 82 (2012)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)
Dong, B., Ji, H., Li, J., Shen, Z., Xu, Y.: Wavelet frame based blind image inpainting. Appl. Comput. Harmonic Anal. 32(2), 268–279 (2012)
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR, pp. 2414–2423 (2016)
Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS, pp. 2672–2680 (2014)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: NeurIPS, pp. 5769–5779 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)
Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. TOG 36(4), 107 (2017)
Jia, J., Tang, C.K.: Image repairing: robust image synthesis by adaptive nd tensor voting. In: CVPR (2003)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. arXiv preprint arXiv:1812.04948 (2018)
Kopf, J., Kienzle, W., Drucker, S., Kang, S.B.: Quality prediction for image completion. TOG 31(6), 131 (2012)
Levin, A., Zomet, A., Weiss, Y.: Learning how to inpaint from global image statistics. In: ICCV (2003)
Li, Y., Liu, S., Yang, J., Yang, M.H.: Generative face completion. In: CVPR, pp. 3911–3919 (2017)
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: Common Objects in Context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image Inpainting for Irregular Holes Using Partial Convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6
Liu, H., Jiang, B., Xiao, Y., Yang, C.: Coherent semantic attention for image inpainting. In: ICCV, pp. 4170–4179 (2019)
Liu, Y., Pan, J., Su, Z.: Deep blind image inpainting. arXiv preprint arXiv:1712.09078 (2017)
Mechrez, R., Talmi, I., Zelnik-Manor, L.: The contextual loss for image transformation with non-aligned data. arXiv preprint arXiv:1803.02077 (2018)
Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)
Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: EdgeConnect: generative image inpainting with adversarial edge learning. arXiv preprint arXiv:1901.00212 (2019)
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR, pp. 2536–2544 (2016)
Qian, R., Tan, R.T., Yang, W., Su, J., Liu, J.: Attentive generative adversarial network for raindrop removal from a single image. In: CVPR, pp. 2482–2491 (2018)
Ren, J.S., Xu, L., Yan, Q., Sun, W.: Shepard convolutional neural networks. In: NeurIPS, pp. 901–909 (2015)
Sagong, M.C., Shin, Y.G., Kim, S.w., Park, S., Ko, S.J.: Pepsi: Fast image inpainting with parallel decoding network. In: CVPR, pp. 11360–11368 (2019)
Sun, J., Yuan, L., Jia, J., Shum, H.Y.: Image completion with structure propagation. TOG 24, 861–868 (2005)
Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: 3DV, pp. 11–20 (2017)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR, pp. 8798–8807 (2018)
Wang, Y., Chen, Y.C., Zhang, X., Sun, J., Jia, J.: Attentive normalization for conditional image generation. In: CVPR, pp. 5094–5103 (2020)
Wang, Y., Szlam, A., Lerman, G.: Robust locally linear analysis with applications to image denoising and blind inpainting. SIAM J. Imaging Sci. 6(1), 526–562 (2013)
Wang, Y., Tao, X., Qi, X., Shen, X., Jia, J.: Image inpainting via generative multi-column convolutional neural networks. In: NeurIPS (2018)
Wang, Y., Tao, X., Shen, X., Jia, J.: Wide-context semantic image extrapolation. In: CVPR, pp. 1399–1408 (2019)
Xie, C., et al.: Image inpainting with learnable bidirectional attention maps. arXiv preprint arXiv:1909.00968 (2019)
Xiong, W., et al.: Foreground-aware image inpainting. In: CVPR, pp. 5840–5848 (2019)
Yan, M.: Restoration of images corrupted by impulse noise and mixed gaussian impulse noise using blind inpainting. SIAM J. Imaging Sci. 6(3), 1227–1245 (2013)
Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image inpainting using multi-scale neural patch synthesis. In: CVPR, p. 3 (2017)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. arXiv preprint arXiv:1801.07892 (2018)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: ICCV, pp. 4471–4480 (2019)
Zeng, Y., Fu, J., Chao, H., Guo, B.: Learning pyramid-context encoder network for high-quality image inpainting. In: CVPR, pp. 1486–1494 (2019)
Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. arXiv preprint arXiv:1805.08318 (2018)
Zhang, S., He, R., Sun, Z., Tan, T.: DeMeshNet: blind face inpainting for deep MeshFace verification. IEEE Trans. Inf. Forensics Secur. 13(3), 637–647 (2017)
Zheng, C., Cham, T.J., Cai, J.: Pluralistic image completion. In: CVPR, pp. 1438–1447 (2019)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. TPAMI 40, 1452–1464 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Chen, YC., Tao, X., Jia, J. (2020). VCNet: A Robust Approach to Blind Image Inpainting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12370. Springer, Cham. https://doi.org/10.1007/978-3-030-58595-2_45
Download citation
DOI: https://doi.org/10.1007/978-3-030-58595-2_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58594-5
Online ISBN: 978-3-030-58595-2
eBook Packages: Computer ScienceComputer Science (R0)