Skip to main content

VCNet: A Robust Approach to Blind Image Inpainting

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12370))

Included in the following conference series:

  • 4444 Accesses

Abstract

Blind inpainting is a task to automatically complete visual contents without specifying masks for missing areas in an image. Previous work assumes known missing-region-pattern, limiting the application scope. We instead relax the assumption by defining a new blind inpainting setting, making training a neural system robust against various unknown missing region patterns. Specifically, we propose a two-stage visual consistency network (VCN) to estimate where to fill (via masks) and generate what to fill. In this procedure, the unavoidable potential mask prediction errors lead to severe artifacts in the subsequent repairing. To address it, our VCN predicts semantically inconsistent regions first, making mask prediction more tractable. Then it repairs these estimated missing regions using a new spatial normalization, making VCN robust to mask prediction errors. Semantically convincing and visually compelling content can be generated. Extensive experiments show that our method is effective and robust in blind image inpainting. And our VCN allows for a wide spectrum of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML, pp. 214–223 (2017)

    Google Scholar 

  2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. TOG 28(3), 24 (2009)

    Article  Google Scholar 

  3. Cai, N., Su, Z., Lin, Z., Wang, H., Yang, Z., Ling, B.W.-K.: Blind inpainting using the fully convolutional neural network. The Visual Computer 33(2), 249–261 (2015). https://doi.org/10.1007/s00371-015-1190-z

    Article  Google Scholar 

  4. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. TIP 13(9), 1200–1212 (2004)

    Google Scholar 

  5. Darabi, S., Shechtman, E., Barnes, C., Goldman, D.B., Sen, P.: Image melding: combining inconsistent images using patch-based synthesis. TOG 31(4), 82 (2012)

    Article  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  7. Dong, B., Ji, H., Li, J., Shen, Z., Xu, Y.: Wavelet frame based blind image inpainting. Appl. Comput. Harmonic Anal. 32(2), 268–279 (2012)

    Article  MathSciNet  Google Scholar 

  8. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR, pp. 2414–2423 (2016)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS, pp. 2672–2680 (2014)

    Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: NeurIPS, pp. 5769–5779 (2017)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  13. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. TOG 36(4), 107 (2017)

    Article  Google Scholar 

  14. Jia, J., Tang, C.K.: Image repairing: robust image synthesis by adaptive nd tensor voting. In: CVPR (2003)

    Google Scholar 

  15. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  16. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  17. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. arXiv preprint arXiv:1812.04948 (2018)

  18. Kopf, J., Kienzle, W., Drucker, S., Kang, S.B.: Quality prediction for image completion. TOG 31(6), 131 (2012)

    Google Scholar 

  19. Levin, A., Zomet, A., Weiss, Y.: Learning how to inpaint from global image statistics. In: ICCV (2003)

    Google Scholar 

  20. Li, Y., Liu, S., Yang, J., Yang, M.H.: Generative face completion. In: CVPR, pp. 3911–3919 (2017)

    Google Scholar 

  21. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: Common Objects in Context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  22. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image Inpainting for Irregular Holes Using Partial Convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  23. Liu, H., Jiang, B., Xiao, Y., Yang, C.: Coherent semantic attention for image inpainting. In: ICCV, pp. 4170–4179 (2019)

    Google Scholar 

  24. Liu, Y., Pan, J., Su, Z.: Deep blind image inpainting. arXiv preprint arXiv:1712.09078 (2017)

  25. Mechrez, R., Talmi, I., Zelnik-Manor, L.: The contextual loss for image transformation with non-aligned data. arXiv preprint arXiv:1803.02077 (2018)

  26. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)

  27. Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: EdgeConnect: generative image inpainting with adversarial edge learning. arXiv preprint arXiv:1901.00212 (2019)

  28. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR, pp. 2536–2544 (2016)

    Google Scholar 

  29. Qian, R., Tan, R.T., Yang, W., Su, J., Liu, J.: Attentive generative adversarial network for raindrop removal from a single image. In: CVPR, pp. 2482–2491 (2018)

    Google Scholar 

  30. Ren, J.S., Xu, L., Yan, Q., Sun, W.: Shepard convolutional neural networks. In: NeurIPS, pp. 901–909 (2015)

    Google Scholar 

  31. Sagong, M.C., Shin, Y.G., Kim, S.w., Park, S., Ko, S.J.: Pepsi: Fast image inpainting with parallel decoding network. In: CVPR, pp. 11360–11368 (2019)

    Google Scholar 

  32. Sun, J., Yuan, L., Jia, J., Shum, H.Y.: Image completion with structure propagation. TOG 24, 861–868 (2005)

    Google Scholar 

  33. Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: 3DV, pp. 11–20 (2017)

    Google Scholar 

  34. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR, pp. 8798–8807 (2018)

    Google Scholar 

  35. Wang, Y., Chen, Y.C., Zhang, X., Sun, J., Jia, J.: Attentive normalization for conditional image generation. In: CVPR, pp. 5094–5103 (2020)

    Google Scholar 

  36. Wang, Y., Szlam, A., Lerman, G.: Robust locally linear analysis with applications to image denoising and blind inpainting. SIAM J. Imaging Sci. 6(1), 526–562 (2013)

    Article  MathSciNet  Google Scholar 

  37. Wang, Y., Tao, X., Qi, X., Shen, X., Jia, J.: Image inpainting via generative multi-column convolutional neural networks. In: NeurIPS (2018)

    Google Scholar 

  38. Wang, Y., Tao, X., Shen, X., Jia, J.: Wide-context semantic image extrapolation. In: CVPR, pp. 1399–1408 (2019)

    Google Scholar 

  39. Xie, C., et al.: Image inpainting with learnable bidirectional attention maps. arXiv preprint arXiv:1909.00968 (2019)

  40. Xiong, W., et al.: Foreground-aware image inpainting. In: CVPR, pp. 5840–5848 (2019)

    Google Scholar 

  41. Yan, M.: Restoration of images corrupted by impulse noise and mixed gaussian impulse noise using blind inpainting. SIAM J. Imaging Sci. 6(3), 1227–1245 (2013)

    Article  MathSciNet  Google Scholar 

  42. Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image inpainting using multi-scale neural patch synthesis. In: CVPR, p. 3 (2017)

    Google Scholar 

  43. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. arXiv preprint arXiv:1801.07892 (2018)

  44. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: ICCV, pp. 4471–4480 (2019)

    Google Scholar 

  45. Zeng, Y., Fu, J., Chao, H., Guo, B.: Learning pyramid-context encoder network for high-quality image inpainting. In: CVPR, pp. 1486–1494 (2019)

    Google Scholar 

  46. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. arXiv preprint arXiv:1805.08318 (2018)

  47. Zhang, S., He, R., Sun, Z., Tan, T.: DeMeshNet: blind face inpainting for deep MeshFace verification. IEEE Trans. Inf. Forensics Secur. 13(3), 637–647 (2017)

    Article  Google Scholar 

  48. Zheng, C., Cham, T.J., Cai, J.: Pluralistic image completion. In: CVPR, pp. 1438–1447 (2019)

    Google Scholar 

  49. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. TPAMI 40, 1452–1464 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 97121 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Chen, YC., Tao, X., Jia, J. (2020). VCNet: A Robust Approach to Blind Image Inpainting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12370. Springer, Cham. https://doi.org/10.1007/978-3-030-58595-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58595-2_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58594-5

  • Online ISBN: 978-3-030-58595-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics