Skip to main content

On Modulating the Gradient for Meta-learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12353))

Included in the following conference series:

Abstract

Inspired by optimization techniques, we propose a novel meta-learning algorithm with gradient modulation to encourage fast-adaptation of neural networks in the absence of abundant data. Our method, termed ModGrad, is designed to circumvent the noisy nature of the gradients which is prevalent in low-data regimes. Furthermore and having the scalability concern in mind, we formulate ModGrad via low-rank approximations, which in turn enables us to employ ModGrad to adapt hefty neural networks. We thoroughly assess and contrast ModGrad against a large family of meta-learning techniques and observe that the proposed algorithm outperforms baselines comfortably while enjoying faster convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Shedivat, M., Bansal, T., Burda, Y., Sutskever, I., Mordatch, I., Abbeel, P.: Continuous adaptation via meta-learning in nonstationary and competitive environments. In: International Conference on Learning Representations (2018)

    Google Scholar 

  2. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  3. Antoniou, A., Edwards, H., Storkey, A.: How to train your MAML. In: International Conference on Learning Representations (2019)

    Google Scholar 

  4. Antoniou, A., Storkey, A.J.: Learning to learn by self-critique. In: Advances in Neural Information Processing Systems, pp. 9936–9946 (2019)

    Google Scholar 

  5. Balcan, M.F., Khodak, M., Talwalkar, A.: Provable guarantees for gradient-based meta-learning. In: International Conference on Machine Learning, pp. 424–433 (2019)

    Google Scholar 

  6. Bertinetto, L., Henriques, J.F., Torr, P., Vedaldi, A.: Meta-learning with differentiable closed-form solvers. In: International Conference on Learning Representations (2019)

    Google Scholar 

  7. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. In: International Conference on Learning Representations (2019)

    Google Scholar 

  8. Desjardins, G., Simonyan, K., Pascanu, R., et al.: Natural neural networks. In: Advances in Neural Information Processing Systems, pp. 2071–2079 (2015)

    Google Scholar 

  9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning (2017)

    Google Scholar 

  10. Flennerhag, S., Moreno, P.G., Lawrence, N., Damianou, A.: Transferring knowledge across learning processes. In: International Conference on Learning Representations (2019)

    Google Scholar 

  11. Flennerhag, S., Rusu, A.A., Pascanu, R., Visin, F., Yin, H., Hadsell, R.: Meta-learning with warped gradient descent. In: International Conference on Learning Representations (2020)

    Google Scholar 

  12. Garnelo, M., et al: Neural processes. arXiv preprint arXiv:1807.01622 (2018)

  13. Gidaris, S., Komodakis, N.: Generating classification weights with GNN denoising autoencoders for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 21–30 (2019)

    Google Scholar 

  14. Grant, E., Finn, C., Levine, S., Darrell, T., Griffiths, T.: Recasting gradient-based meta-learning as hierarchical Bayes. In: International Conference on Learning Representations (2018)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  16. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  17. Koniusz, P., Zhang, H.: Power normalizations in fine-grained image, few-shot image and graph classification. TPAMI (2020)

    Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  19. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10657–10665 (2019)

    Google Scholar 

  21. Lee, Y., Choi, S.: Gradient-based meta-learning with learned layerwise metric and subspace. In: International Conference on Machine Learning, pp. 2933–2942 (2018)

    Google Scholar 

  22. Li, Z., Zhou, F., Chen, F., Li, H.: Meta-SGD: learning to learn quickly for few shot learning. arXiv preprint arXiv:1707.09835 (2017)

  23. Liu, Y., et al.: Learning to propagate labels: transductive propagation network for few-shot learning. In: International Conference on Learning Representations (2019)

    Google Scholar 

  24. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision, December 2015

    Google Scholar 

  25. Munkhdalai, T., Yu, H.: Meta networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2554–2563. JMLR. org (2017)

    Google Scholar 

  26. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999 (2018)

  27. Park, E., Oliva, J.B.: Meta-curvature. In: Advances in Neural Information Processing Systems, pp. 3309–3319 (2019)

    Google Scholar 

  28. Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: Film: visual reasoning with a general conditioning layer. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  29. Qiao, S., Liu, C., Shen, W., Yuille, A.L.: Few-shot image recognition by predicting parameters from activations. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  30. Raghu, A., Raghu, M., Bengio, S., Vinyals, O.: Rapid learning or feature reuse? Towards understanding the effectiveness of MAML. In: International Conference on Learning Representations (2020)

    Google Scholar 

  31. Rajeswaran, A., Finn, C., Kakade, S., Levine, S.: Meta-learning with implicit gradients. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  32. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: International Conference on Learning Representations (2017)

    Google Scholar 

  33. Rusu, A.A., et al.: Meta-learning with latent embedding optimization. In: International Conference on Learning Representations (2019)

    Google Scholar 

  34. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: International Conference on Machine Learning, pp. 1842–1850 (2016)

    Google Scholar 

  35. Simon, C., Koniusz, P., Nock, R., Harandi, M.: Adaptive subspaces for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4136–4145 (2020)

    Google Scholar 

  36. Snell, J., Swersky, K., Richard, Z.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  37. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  38. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033 (2012)

    Google Scholar 

  39. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  40. Vuorio, R., Sun, S.H., Hu, H., Lim, J.J.: Multimodal model-agnostic meta-learning via task-aware modulation. In: Advances in Neural Information Processing Systems, pp. 1–12 (2019)

    Google Scholar 

  41. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proceedings of the British Machine Vision Conference, pp. 87.1–87.12 (2016)

    Google Scholar 

  42. Zhang, H., Koniusz, P.: Power normalizing second-order similarity network for few-shot learning. In: Winter Conference on Applications of Computer Vision (2019)

    Google Scholar 

  43. Zhang, H., Zhang, L., Qui, X., Li, H., Torr, P.H.S., Koniusz, P.: Few-shot action recognition with permutation-invariant attention. In: ECCV (2020)

    Google Scholar 

  44. Zhang, Y., Qu, H., Chen, C., Metaxas, D.: Taming the noisy gradient: train deep neural networks with small batch sizes. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 4348–4354 (2019)

    Google Scholar 

  45. Zintgraf, L., Shiarli, K., Kurin, V., Hofmann, K., Whiteson, S.: Fast context adaptation via meta-learning. In: International Conference on Machine Learning, pp. 7693–7702 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Simon .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 350 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simon, C., Koniusz, P., Nock, R., Harandi, M. (2020). On Modulating the Gradient for Meta-learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12353. Springer, Cham. https://doi.org/10.1007/978-3-030-58598-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58598-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58597-6

  • Online ISBN: 978-3-030-58598-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics