Skip to main content

Two-Phase Pseudo Label Densification for Self-training Based Domain Adaptation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12358))

Included in the following conference series:

  • 4231 Accesses

Abstract

Recently, deep self-training approaches emerged as a powerful solution to the unsupervised domain adaptation. The self-training scheme involves iterative processing of target data; it generates target pseudo labels and retrains the network. However, since only the confident predictions are taken as pseudo labels, existing self-training approaches inevitably produce sparse pseudo labels in practice. We see this is critical because the resulting insufficient training-signals lead to a sub-optimal, error-prone model. In order to tackle this problem, we propose a novel Two-phase Pseudo Label Densification framework, referred to as TPLD. In the first phase, we use sliding window voting to propagate the confident predictions, utilizing intrinsic spatial-correlations in the images. In the second phase, we perform a confidence-based easy-hard classification. For the easy samples, we now employ their full pseudo-labels. For the hard ones, we instead adopt adversarial learning to enforce hard-to-easy feature alignment. To ease the training process and avoid noisy predictions, we introduce the bootstrapping mechanism to the original self-training loss. We show the proposed TPLD can be easily integrated into existing self-training based approaches and improves the performance significantly. Combined with the recently proposed CRST self-training framework, we achieve new state-of-the-art results on two standard UDA benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atapour-Abarghouei, A., Breckon, T.P.: Real-time monocular depth estimation using synthetic data with domain adaptation via image style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2800–2810 (2018)

    Google Scholar 

  2. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell., June 2016. https://doi.org/10.1109/TPAMI.2017.2699184

  3. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation, June 2017

    Google Scholar 

  4. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 3339–3348 (2018)

    Google Scholar 

  5. Chen, Y.C., Lin, Y.Y., Yang, M.H., Huang, J.B.: Crdoco: pixel-level domain transfer with cross-domain consistency. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  6. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: Imagenet: a large-scale hierarchical image database, pp. 248–255, June 2009. https://doi.org/10.1109/CVPR.2009.5206848

  8. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 2960–2967 (2013)

    Google Scholar 

  9. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495 (2014)

  10. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-classification networks for unsupervised domain adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_36

    Chapter  Google Scholar 

  11. Golemo, F., Taiga, A.A., Courville, A., Oudeyer, P.Y.: Sim-to-real transfer with neural-augmented robot simulation. In: Billard, A., Dragan, A., Peters, J., Morimoto, J. (eds.) Proceedings of the 2nd Conference on Robot Learning. Proceedings of Machine Learning Research, vol. 87, pp. 817–828. PMLR, 29–31 October 2018. http://proceedings.mlr.press/v87/golemo18a.html

  12. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 2066–2073. IEEE (2012)

    Google Scholar 

  13. Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: an unsupervised approach. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 999–1006. IEEE (2011)

    Google Scholar 

  14. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization, pp. 529–536 (2005)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: Proceedings of International Conference on Machine Learning (ICML), pp. 1989–1998 (2018)

    Google Scholar 

  18. Hoffman, J., Wang, D., Yu, F., Darrell, T.: FCNS in the wild: Pixel-level adversarial and constraint-based adaptation. arXiv preprint arXiv:1612.02649 (2016)

  19. Hong, W., Wang, Z., Yang, M., Yuan, J.: Conditional generative adversarial network for structured domain adaptation. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  20. Kulis, B., Saenko, K., Darrell, T.: What you saw is not what you get: domain adaptation using asymmetric kernel transforms. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1785–1792. IEEE (2011)

    Google Scholar 

  21. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 5542–5550 (2017)

    Google Scholar 

  22. Li, W., Xu, Z., Xu, D., Dai, D., Van Gool, L.: Domain generalization and adaptation using low rank exemplar SVMs. In: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 40, 1114–1127. IEEE (2017)

    Google Scholar 

  23. Long, M., Cao, Y., Cao, Z., Wang, J., Jordan, M.I.: Transferable representation learning with deep adaptation networks. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 41, 3071–3085 (2019). https://doi.org/10.1109/TPAMI.2018.2868685

    Article  Google Scholar 

  24. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791 (2015)

  25. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: Proceedings of Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  26. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 11, 2579–2605 (2008)

    MATH  Google Scholar 

  27. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 5715–5725 (2017)

    Google Scholar 

  28. Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., Kim, K.: Image to image translation for domain adaptation. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 4500–4509, June 2018. https://doi.org/10.1109/CVPR.2018.00473

  29. Panareda Busto, P., Gall, J.: Open set domain adaptation. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 754–763 (2017)

    Google Scholar 

  30. Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep neural networks on noisy labels with bootstrapping, December 2014

    Google Scholar 

  31. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  32. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016)

    Google Scholar 

  33. Sener, O., Song, H.O., Saxena, A., Savarese, S.: Learning transferrable representations for unsupervised domain adaptation. pp. 2110–2118 (2016)

    Google Scholar 

  34. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 2107–2116 (2017)

    Google Scholar 

  35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556, September 2014

    Google Scholar 

  36. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 7472–7481 (2018)

    Google Scholar 

  37. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 2517–2526 (2019)

    Google Scholar 

  38. Zhu, X.: Semi-supervised learning tutorial. In: Proceedings of International Conference on Machine Learning (ICML) (2007)

    Google Scholar 

  39. Zou, Y., Yu, Z., Kumar, B.V., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Proceedings of European Conf. on Computer Vision (ECCV), pp. 289–305 (2018)

    Google Scholar 

  40. Zou, Y., Yu, Z., Liu, X., Kumar, B.V., Wang, J.: Confidence regularized self-training. In: Proceedings of International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

Download references

Acknowledgement

This research is supported by the National Cancer Center(NCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In So Kweon .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1335 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shin, I., Woo, S., Pan, F., Kweon, I.S. (2020). Two-Phase Pseudo Label Densification for Self-training Based Domain Adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12358. Springer, Cham. https://doi.org/10.1007/978-3-030-58601-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58601-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58600-3

  • Online ISBN: 978-3-030-58601-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics