Abstract
Recently, deep self-training approaches emerged as a powerful solution to the unsupervised domain adaptation. The self-training scheme involves iterative processing of target data; it generates target pseudo labels and retrains the network. However, since only the confident predictions are taken as pseudo labels, existing self-training approaches inevitably produce sparse pseudo labels in practice. We see this is critical because the resulting insufficient training-signals lead to a sub-optimal, error-prone model. In order to tackle this problem, we propose a novel Two-phase Pseudo Label Densification framework, referred to as TPLD. In the first phase, we use sliding window voting to propagate the confident predictions, utilizing intrinsic spatial-correlations in the images. In the second phase, we perform a confidence-based easy-hard classification. For the easy samples, we now employ their full pseudo-labels. For the hard ones, we instead adopt adversarial learning to enforce hard-to-easy feature alignment. To ease the training process and avoid noisy predictions, we introduce the bootstrapping mechanism to the original self-training loss. We show the proposed TPLD can be easily integrated into existing self-training based approaches and improves the performance significantly. Combined with the recently proposed CRST self-training framework, we achieve new state-of-the-art results on two standard UDA benchmarks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atapour-Abarghouei, A., Breckon, T.P.: Real-time monocular depth estimation using synthetic data with domain adaptation via image style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2800–2810 (2018)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell., June 2016. https://doi.org/10.1109/TPAMI.2017.2699184
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation, June 2017
Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 3339–3348 (2018)
Chen, Y.C., Lin, Y.Y., Yang, M.H., Huang, J.B.: Crdoco: pixel-level domain transfer with cross-domain consistency. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), June 2019
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: Imagenet: a large-scale hierarchical image database, pp. 248–255, June 2009. https://doi.org/10.1109/CVPR.2009.5206848
Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 2960–2967 (2013)
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495 (2014)
Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-classification networks for unsupervised domain adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_36
Golemo, F., Taiga, A.A., Courville, A., Oudeyer, P.Y.: Sim-to-real transfer with neural-augmented robot simulation. In: Billard, A., Dragan, A., Peters, J., Morimoto, J. (eds.) Proceedings of the 2nd Conference on Robot Learning. Proceedings of Machine Learning Research, vol. 87, pp. 817–828. PMLR, 29–31 October 2018. http://proceedings.mlr.press/v87/golemo18a.html
Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 2066–2073. IEEE (2012)
Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: an unsupervised approach. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 999–1006. IEEE (2011)
Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization, pp. 529–536 (2005)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: Proceedings of International Conference on Machine Learning (ICML), pp. 1989–1998 (2018)
Hoffman, J., Wang, D., Yu, F., Darrell, T.: FCNS in the wild: Pixel-level adversarial and constraint-based adaptation. arXiv preprint arXiv:1612.02649 (2016)
Hong, W., Wang, Z., Yang, M., Yuan, J.: Conditional generative adversarial network for structured domain adaptation. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), June 2018
Kulis, B., Saenko, K., Darrell, T.: What you saw is not what you get: domain adaptation using asymmetric kernel transforms. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1785–1792. IEEE (2011)
Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 5542–5550 (2017)
Li, W., Xu, Z., Xu, D., Dai, D., Van Gool, L.: Domain generalization and adaptation using low rank exemplar SVMs. In: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 40, 1114–1127. IEEE (2017)
Long, M., Cao, Y., Cao, Z., Wang, J., Jordan, M.I.: Transferable representation learning with deep adaptation networks. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 41, 3071–3085 (2019). https://doi.org/10.1109/TPAMI.2018.2868685
Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791 (2015)
Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: Proceedings of Computer Vision and Pattern Recognition (CVPR) (2019)
van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 11, 2579–2605 (2008)
Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 5715–5725 (2017)
Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., Kim, K.: Image to image translation for domain adaptation. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 4500–4509, June 2018. https://doi.org/10.1109/CVPR.2018.00473
Panareda Busto, P., Gall, J.: Open set domain adaptation. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 754–763 (2017)
Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep neural networks on noisy labels with bootstrapping, December 2014
Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7
Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016)
Sener, O., Song, H.O., Saxena, A., Savarese, S.: Learning transferrable representations for unsupervised domain adaptation. pp. 2110–2118 (2016)
Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 2107–2116 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556, September 2014
Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 7472–7481 (2018)
Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 2517–2526 (2019)
Zhu, X.: Semi-supervised learning tutorial. In: Proceedings of International Conference on Machine Learning (ICML) (2007)
Zou, Y., Yu, Z., Kumar, B.V., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Proceedings of European Conf. on Computer Vision (ECCV), pp. 289–305 (2018)
Zou, Y., Yu, Z., Liu, X., Kumar, B.V., Wang, J.: Confidence regularized self-training. In: Proceedings of International Conference on Computer Vision (ICCV), October 2019
Acknowledgement
This research is supported by the National Cancer Center(NCC).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Shin, I., Woo, S., Pan, F., Kweon, I.S. (2020). Two-Phase Pseudo Label Densification for Self-training Based Domain Adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12358. Springer, Cham. https://doi.org/10.1007/978-3-030-58601-0_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-58601-0_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58600-3
Online ISBN: 978-3-030-58601-0
eBook Packages: Computer ScienceComputer Science (R0)