Skip to main content

Class-Incremental Domain Adaptation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12358))

Included in the following conference series:

  • 4318 Accesses

Abstract

We introduce a practical Domain Adaptation (DA) paradigm called Class-Incremental Domain Adaptation (CIDA). Existing DA methods tackle domain-shift but are unsuitable for learning novel target-domain classes. Meanwhile, class-incremental (CI) methods enable learning of new classes in absence of source training data, but fail under a domain-shift without labeled supervision. In this work, we effectively identify the limitations of these approaches in the CIDA paradigm. Motivated by theoretical and empirical observations, we propose an effective method, inspired by prototypical networks, that enables classification of target samples into both shared and novel (one-shot) target classes, even under a domain-shift. Our approach yields superior performance as compared to both DA and CI methods in the CIDA paradigm.

J. N. Kundu and R. M. Venkatesh are Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baktashmotlagh, M., Faraki, M., Drummond, T., Salzmann, M.: Learning factorized representations for open-set domain adaptation. In: ICLR (2019)

    Google Scholar 

  2. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)

    Article  MathSciNet  Google Scholar 

  3. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: NeurIPS (2007)

    Google Scholar 

  4. Castro, F.M., Marin-Jimenez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: ECCV (2018)

    Google Scholar 

  5. Chang, W.G., You, T., Seo, S., Kwak, S., Han, B.: Domain-specific batch normalization for unsupervised domain adaptation. In: CVPR (2019)

    Google Scholar 

  6. Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In: AISTATS (2005)

    Google Scholar 

  7. Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without memorizing. In: CVPR (2019)

    Google Scholar 

  8. Dong, N., Xing, E.P.: Domain adaption in one-shot learning. In: ECML-PKDD (2018)

    Google Scholar 

  9. Fort, S.: Gaussian prototypical networks for few-shot learning on omniglot (2017). arXiv preprint arXiv:1708.02735

  10. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML (2015)

    Google Scholar 

  11. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. JMLR 17(1), 2030–2096 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: CVPR (2012)

    Google Scholar 

  13. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgetting in gradient-based neural networks (2013). arXiv preprint arXiv:1312.6211

  14. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: NeurIPS (2005)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: ICCV (2015)

    Google Scholar 

  16. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: ICLR (2017)

    Google Scholar 

  17. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  18. Khosla, A., Zhou, T., Malisiewicz, T., Efros, A.A., Torralba, A.: Undoing the damage of dataset bias. In: ECCV (2012)

    Google Scholar 

  19. Kingma, D.P., Ba, J.L.: Adam: A method for stochastic optimization. In: ICLR (2014)

    Google Scholar 

  20. Kundu, J.N., Gor, M., Agrawal, D., Babu, R.V.: GAN-Tree: An incrementally learned hierarchical generative framework for multi-modal data distributions. In: ICCV (2019)

    Google Scholar 

  21. Kundu, J.N., Lakkakula, N., Babu, R.V.: UM-Adapt: Unsupervised multi-task adaptation using adversarial cross-task distillation. In: ICCV (2019)

    Google Scholar 

  22. Kundu, J.N., Uppala, P.K., Pahuja, A., Babu, R.V.: Adadepth: Unsupervised content congruent adaptation for depth estimation. In: CVPR (2018)

    Google Scholar 

  23. Kundu, J.N., Venkat, N., Rahul, M.V., Venkatesh Babu, R.: Universal source-free domain adaptation. In: CVPR (2020)

    Google Scholar 

  24. Kundu, J.N., Venkat, N., Revanur, A., Rahul, M.V., Venkatesh Babu, R.: Towards inheritable models for open-set domain adaptation. In: CVPR (2020)

    Google Scholar 

  25. Kuroki, S., Charoenphakdee, N., Bao, H., Honda, J., Sato, I., Sugiyama, M.: Unsupervised domain adaptation based on source-guided discrepancy. In: AAAI (2019)

    Google Scholar 

  26. Lee, D.H.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning at ICML (2013)

    Google Scholar 

  27. Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples. In: ICLR (2018)

    Google Scholar 

  28. Li, Z., Hoiem, D.: Learning without forgetting. TPAMI 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  29. Liu, H., Cao, Z., Long, M., Wang, J., Yang, Q.: Separate to adapt: Open set domain adaptation via progressive separation. In: CVPR (2019)

    Google Scholar 

  30. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: ICML (2015)

    Google Scholar 

  31. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: NeurIPS (2016)

    Google Scholar 

  32. Lopes, R.G., Fenu, S., Starner, T.: Data-free knowledge distillation for deep neural networks. In: LLD Workshop at NeurIPS (2017)

    Google Scholar 

  33. Luo, Z., Zou, Y., Hoffman, J., Fei-Fei, L.F.: Label efficient learning of transferable representations across domains and tasks. In: NeurIPS (2017)

    Google Scholar 

  34. Nayak, G.K., Mopuri, K.R., Shaj, V., Radhakrishnan, V.B., Chakraborty, A.: Zero-shot knowledge distillation in deep networks. In: ICML (2019)

    Google Scholar 

  35. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2009)

    Google Scholar 

  36. Panareda Busto, P., Gall, J.: Open set domain adaptation. In: ICCV (2017)

    Google Scholar 

  37. Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. In: AAAI (2018)

    Google Scholar 

  38. Peng, H., Li, J., Song, Y., Liu, Y.: Incrementally learning the hierarchical softmax function for neural language models. In: AAAI (2017)

    Google Scholar 

  39. Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., Saenko, K.: Visda: The visual domain adaptation challenge (2017). arXiv preprint arXiv:1710.06924

  40. Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G.: Regularizing neural networks by penalizing confident output distributions. In: ICLR (2017)

    Google Scholar 

  41. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: Incremental classifier and representation learning. In: CVPR (2017)

    Google Scholar 

  42. Ruping, S.: Incremental learning with support vector machines. In: ICDM (2001)

    Google Scholar 

  43. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: ECCV (2010)

    Google Scholar 

  44. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR (2018)

    Google Scholar 

  45. Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by backpropagation. In: ECCV (2018)

    Google Scholar 

  46. Sankaranarayanan, S., Balaji, Y., Castillo, C.D., Chellappa, R.: Generate to adapt: Aligning domains using generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  47. Shu, Y., Cao, Z., Long, M., Wang, J.: Transferable curriculum for weakly-supervised domain adaptation. In: AAAI (2019)

    Google Scholar 

  48. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NeurIPS (2017)

    Google Scholar 

  49. Sun, B., Saenko, K.: Deep coral: Correlation alignment for deep domain adaptation. In: ECCV Workshops (2016)

    Google Scholar 

  50. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR (2011)

    Google Scholar 

  51. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR (2017)

    Google Scholar 

  52. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: Maximizing for domain invariance (2014). arXiv preprint arXiv:1412.3474

  53. Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., Fu, Y.: Large scale incremental learning. In: CVPR (2019)

    Google Scholar 

  54. You, K., Long, M., Cao, Z., Wang, J., Jordan, M.I.: Universal domain adaptation. In: CVPR (2019)

    Google Scholar 

  55. Zheng, Z., Hong, P.: Robust detection of adversarial attacks by modeling the intrinsic properties of deep neural networks. In: NeurIPS (2018)

    Google Scholar 

Download references

Acknowledgement

This work is supported by a Wipro PhD Fellowship and a grant from Uchhatar Avishkar Yojana (UAY, IISC_010), MHRD, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jogendra Nath Kundu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1721 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kundu, J.N., Venkatesh, R.M., Venkat, N., Revanur, A., Babu, R.V. (2020). Class-Incremental Domain Adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12358. Springer, Cham. https://doi.org/10.1007/978-3-030-58601-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58601-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58600-3

  • Online ISBN: 978-3-030-58601-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics