Skip to main content

A Novel Line Integral Transform for 2D Affine-Invariant Shape Retrieval

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12373))

Included in the following conference series:

  • 3588 Accesses

Abstract

Radon transform is a popular mathematical tool for shape analysis. However, it cannot handle affine deformation. Although its extended version, trace transform, allow us to construct affine invariants, they are less informative and computational expensive due to the loss of spatial relationship between trace lines and the extensive repeated calculation of transform. To address this issue, a novel line integral transform is proposed. We first use binding line pairs that have the desirable property of affine preserving as a reference frame to rewrite the diametrical dimension parameters of the lines in a relative manner which make them independent on affine transform. Along polar angle dimension of the line parameters, a moment-based normalization is then conducted to degrade the affine transform to similarity transform which can be easily normalized by Fourier transform. The proposed transform is not only invariant to affine transform, but also preserves the spatial relationship between line integrals which make it very informative. Another advantage of the proposed transform is that it is more efficient than the trace transform. Conducting it one time can allow us to achieve a 2D matrix of affine invariants. While conducting the trace transform once only generates a single feature and multiple trace transforms of different functionals are needed to derive more to make the descriptors informative. The effectiveness of the proposed transform has been validated on two types of standard shape test cases, affinely distorted contour shape dataset and region shape dataset, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deans, S.R.: The Radon Transform and Some of Its Applications. Wiley, New York (1983)

    MATH  Google Scholar 

  2. Strichartz, R.: A Guide to Distribution Theory and Fourier Transforms. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  3. Hong, B., Soatto, S.: Shape matching using multiscale integral invariants. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 151–160 (2015)

    Article  Google Scholar 

  4. Baumberg, A.: Reliable feature matching across widely separated views. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 774–781 (2000)

    Google Scholar 

  5. Petrou, M., Kadyrov, A.: Affine invariant features from the trace transform. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 30–44 (2004)

    Article  Google Scholar 

  6. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  7. Bryner, D., Srivastava, A., Klassen, E.: Affine-invariant, elastic shape analysis of planar contours. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 390–397 (2012)

    Google Scholar 

  8. Bryner, D., Klassen, E., Le, H., Srivastava, A.: 2D affine and projective shape analysis. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 998–1011 (2014)

    Article  Google Scholar 

  9. Latecki, L.J., Lakamper, R., Eckhardt, T.: Shape descriptors for no-rigid shapes with a single closed contour. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, vol. 1, pp. 424–429 (2000)

    Google Scholar 

  10. Zuliani, M., Bhagavathy, S., Manjunath, B.S., Kenney, C.: Affine-invariant curve matching. In: Proceedings of the IEEE International Conference on Image Processing (2004)

    Google Scholar 

  11. Rahtu, E., Salo, M., Heikkila, J.: Affine invariant pattern recognition using multiscale autoconvolution. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 908–918 (2005)

    Article  Google Scholar 

  12. Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pattern Recogn. 26(1), 167–174 (1993)

    Article  MathSciNet  Google Scholar 

  13. Mai, F., Chang, C., Hung, Y.S.: A subspace approach for matching 2D shapes under affine distortions. Pattern Recogn. 44(2), 210–221 (2011)

    Article  MATH  Google Scholar 

  14. Jia, Q., Fan, X., Liu, Y., Li, H., Luo, Z., Guo, H.: Hierarchical projective invariant contexts for shape recognition. Pattern Recogn. 52(52), 358–374 (2016)

    Article  Google Scholar 

  15. Domokos, C., Kato, Z.: Parametric estimation of affine deformations of planar shapes. Pattern Recogn. 43(3), 569–578 (2010)

    Article  MATH  Google Scholar 

  16. Tarel, J., Wolovich, W., Cooper, D.B.: Covariant-conics decomposition of quartics for 2D shape recognition and alignment. J. Math. Imaging Vis. 19(3), 255–273 (2003). https://doi.org/10.1023/A:1026285105653

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, Z., Cohen, F.S.: Affine-invariant B-spline moments for curve matching. IEEE Trans. Image Process. 5(10), 1473–1480 (1996)

    Article  Google Scholar 

  18. Wang, Y., Teoh, E.K.: 2D affine-invariant contour matching using B-spline model. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1853–1858 (2007)

    Article  Google Scholar 

  19. Srestasathiern, P., Yilmaz, A.: Planar shape representation and matching under projective transformation. Comput. Vis. Image Underst. 115(11), 1525–1535 (2011)

    Article  Google Scholar 

  20. Arbter, K., Snyder, W.E., Burkhardt, H., Hirzinger, G.: Application of affine-invariant Fourier descriptors to recognition of 3-D objects. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 640–647 (1990)

    Article  Google Scholar 

  21. Heikkilä, J.: Pattern matching with affine moment descriptors. Pattern Recogn. 37(9), 1825–1834 (2004)

    Article  MATH  Google Scholar 

  22. Khalil, M.I., Bayoumi, M.M.: A dyadic wavelet affine invariant function for 2D shape recognition. IEEE Trans. Anal. Mach. Intell. 23(10), 1152–1164 (2001)

    Article  Google Scholar 

  23. Rube, I.E., Ahmed, M., Kamel, M.S.: Wavelet approximation-based affine invariant shape representation functions. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 323–327 (2006)

    Article  Google Scholar 

  24. Ruiz, A., Lopez-de-Teruel, P.E., Fernandez-Maimo, L.: Efficient planar affine canonicalization. Pattern Recogn. 72, 236–253 (2017)

    Article  Google Scholar 

  25. Xue, Z., Shen, D., Teoh, E.K.: An efficient fuzzy algorithm for aligning shapes under affine transformations. Pattern Recogn. 34(6), 1171–1180 (2001)

    Article  MATH  Google Scholar 

  26. Yang, Z., Cohen, F.S.: Cross-weighted moments and affine invariants for image registration and matching. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 804–814 (1999)

    Article  Google Scholar 

  27. Kadyrov, A., Petrou, M.: Affine parameter estimation from the trace transform. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1631–1645 (2006)

    Article  Google Scholar 

  28. Wang, Y., Huang, K., Tan, T.: Human activity recognition based on R transform. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  29. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008)

    Google Scholar 

  30. Korn, P., Sidiropoulos, N.D., Faloutsos, C., Siegel, E.L., Protopapas, Z.: Fast and effective retrieval of medical tumor shapes. IEEE Trans. Knowl. Data Eng. 10(6), 889–904 (1998)

    Article  Google Scholar 

  31. Suk, T., Flusser, J.: Affine moment invariants generated by graph method. Pattern Recogn. 44(9), 2047–2056 (2011)

    Article  Google Scholar 

  32. Chen, Y.W., Chen, Y.Q.: Invariant description and retrieval of planar shapes using Radon composite features. IEEE Trans. Signal Process. 56(10), 4762–4771 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hjouj, F., Kammler, D.W.: Identification of reflected, scaled, translated, and rotated objects from their Radon projections. IEEE Trans. Image Process. 17(3), 301–310 (2008)

    Article  MathSciNet  Google Scholar 

  34. Tabbone, S., Wendling, L., Salmon, J.: A new shape descriptor defined on the Radon transform. Comput. Vis. Image Underst. 102(1), 42–51 (2006)

    Article  Google Scholar 

  35. Hoang, T.V., Tabbone, S.: The generalization of the R-transform for invariant pattern representation. Pattern Recogn. 45(6), 2145–2163 (2012)

    Article  MATH  Google Scholar 

  36. Hasegawa, M., Tabbone, S.: Amplitude-only log Radon transform for geometric invariant shape descriptor. Pattern Recogn. 47(2), 643–658 (2014)

    Article  Google Scholar 

  37. Kadyrov, A., Petrou, M.: The trace transform and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 23(8), 811–828 (2001)

    Article  Google Scholar 

  38. Zhang, Y., Chu, C.H.: IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 446–458 (2011)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Australian Research Council (ARC) under Discovery Grant DP140101075 and the Natural Science Foundation of China under Grant 61372158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, B., Gao, Y. (2020). A Novel Line Integral Transform for 2D Affine-Invariant Shape Retrieval. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12373. Springer, Cham. https://doi.org/10.1007/978-3-030-58604-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58604-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58603-4

  • Online ISBN: 978-3-030-58604-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics