Abstract
In 3D recognition, to fuse multi-scale structure information, existing methods apply hierarchical frameworks stacked by multiple fusion layers for integrating current relative locations with structure information from the previous level. In this paper, we deeply analyze these point recognition frameworks and present a factor, called difference ratio, to measure the influence of structure information among different levels on the final representation. We discover that structure information in deeper layers is overwhelmed by information in shallower layers in generating the final features, which prevents the model from understanding the point cloud in a global view. Inspired by this observation, we propose a novel channel normalization scheme to balance structure information among different layers and avoid excessive accumulation of shallow information, which benefits the model in exploiting and integrating multilayer structure information. We evaluate our channel normalization in several core 3D recognition tasks including classification, segmentation and detection. Experimental results show that our channel normalization further boosts the performance of state-of-the-art methods effectively.
Z. Yang and Y. Sun—Equal Contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, Q., Sun, L., Wang, Z., Jia, K., Yuille, A.: Object as hotspots: an anchor-free 3D object detection approach via firing of hotspots (2019)
Chen, Y., Liu, S., Shen, X., Jia, J.: Fast point R-CNN. In: Proceedings of the ICCV (2019)
Feng, Y., Zhang, Z., Zhao, X., Ji, R., Gao, Y.: GVCNN: group-view convolutional neural networks for 3D shape recognition. In: Proceedings of the CVPR (2018)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32, 1231–1237 (2013)
Guo, H., Wang, J., Gao, Y., Li, J., Lu, H.: Multi-view 3D object retrieval with deep embedding network. IEEE Trans. Image Process. 25, 5526–5537 (2016)
Klokov, R., Lempitsky, V.S.: Escape from cells: deep Kd-networks for the recognition of 3D point cloud models. In: Proceedings of the ICCV (2017)
Kuang, H., Wang, B., An, J., Zhang, M., Zhang, Z.: Voxel-FPN: multi-scale voxel feature aggregation in 3D object detection from point clouds. Sensors 20, 704 (2020)
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: Proceedings of the CVPR (2019)
Li, R., Li, X., Fu, C., Cohen-Or, D., Heng, P.: PU-GAN: a point cloud upsampling adversarial network. CoRR (2019)
Li, Y., Bu, R., Sun, M., Chen, B.: PointCNN. CoRR (2018)
Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor 3D object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 663–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_39
Liu, X., Qi, C.R., Guibas, L.J.: FlowNet3D: learning scene flow in 3D point clouds. In: Proceedings of the CVPR (2019)
Liu, Y., Fan, B., Meng, G., Lu, J., Xiang, S., Pan, C.: DensePoint: learning densely contextual representation for efficient point cloud processing. In: Proceedings of the ICCV (2019)
Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the CVPR (2019)
Liu, Z., Zhao, X., Huang, T., Hu, R., Zhou, Y., Bai, X.: TANet: robust 3D object detection from point clouds with triple attention. AAAI (2020)
Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3D point cloud understanding. In: Proceedings of the ICCV (2019)
Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: Proceedings of the IROS (2015)
Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3D object detection from RGB-D data. CoRR (2017)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the CVPR (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the NIPS (2017)
Shen, Y., Feng, C., Yang, Y., Tian, D.: Mining point cloud local structures by kernel correlation and graph pooling. In: Proceedings of the CVPR (2018)
Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the CVPR (2019)
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
Su, H., et al.: SPLATNet: sparse lattice networks for point cloud processing. In: Proceedings of the CVPR (2018)
Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.G.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the ICCV (2015)
Thomas, H., Qi, C.R., Deschaud, J., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the ICCV (2019)
Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set feature learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 56–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_4
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38, 1–12 (2019)
Wu, W., Qi, Z., Li, F.: PointConv: deep convolutional networks on 3D point clouds. In: Proceedings of the CVPR (2019)
Wu, Z., et al.: 3D shapeNets: a deep representation for volumetric shapes. In: Proceedings of the CVPR (2015)
Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18, 3337 (2018)
Yang, Z., Sun, Y., Liu, S., Jia, J.: 3DSSD: point-based 3D single stage object detector (2020)
Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: STD: sparse-to-dense 3D object detector for point cloud. In: Proceedings of the ICCV (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, Z., Sun, Y., Liu, S., Qi, X., Jia, J. (2020). CN: Channel Normalization for Point Cloud Recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12355. Springer, Cham. https://doi.org/10.1007/978-3-030-58607-2_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-58607-2_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58606-5
Online ISBN: 978-3-030-58607-2
eBook Packages: Computer ScienceComputer Science (R0)