Skip to main content

A Multi Perspective Framework for Enhanced Supply Chain Analytics

  • Conference paper
  • First Online:
Business Process Management (BPM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12168))

Included in the following conference series:

  • 5185 Accesses

Abstract

Supply chain analytics, especially in the field of food supply has become a strategic business function. Monthly executive sales and operation planning meetings utilize supply chain analytics to inform strategic business decisions. Having identified gaps in the strategic management of food supply chains, a multi perspective supply chain analytics framework is developed incorporating process and data attributes to support decision making. Using Design Science as the research methodology, a novel framework with a supporting IT artefact is built and presented with early evaluation results.

The resulting multi perspective supply chain analytics framework equips practitioners to identify strategic issues, providing important decision support information. The case study further illustrates the framework has applicability across all integrated food supply chains. This research has highlighted gaps in the application of process science to the supply chain management domain, particularly in the area of simultaneous assessment of process and data. The outcomes contribute to research in this domain providing a framework that will enhance the significant reference modelling and operational management work that has occurred in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.apics.org/apics-for-business/frameworks/scor.

  2. 2.

    We use the pseudo-name ‘Case A’, in line with the anonymity and research ethics agreements.

  3. 3.

    See https://www.mla.com.au for further details.

  4. 4.

    http://www.processmining.org/tools.

  5. 5.

    https://powerbi.microsoft.com.

  6. 6.

    Interview note from C Suite Executive large cattle business.

  7. 7.

    Radio Frequency Identification.

  8. 8.

    Interview with Sander Leemans, developer of the IVM and DFVM algorithms.

  9. 9.

    http://www.bom.gov.au/qld.

  10. 10.

    https://camunda.com.

  11. 11.

    https://rapidminer.com.

References

  1. Behzadi, G., O’Sullivan, M.J., Olsen, T.L., Scrimgeour, F., Zhang, A.: Robust and resilient strategies for managing supply disruptions in an agribusiness supply chain. Int. J. Prod. Econ. 191, 207–220 (2017). https://doi.org/10.1016/j.ijpe.2017.06.018

    Article  Google Scholar 

  2. Plenert, G.: Supply Chain Optimization Through Segmentation and Analytics. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  3. Sithole, B., Silva, S.G., Kavelj, M.: Supply chain optimization: enhancing end-to-end visibility. Procedia Eng. 159, 12–18 (2016). https://doi.org/10.1016/j.proeng.2016.08.058

    Article  Google Scholar 

  4. Hevner, A., March, S., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)

    Article  Google Scholar 

  5. Yin, R.K.: Case Study Research: Design and Methods, 4th edn. Sage Publications, Thousand Oaks (2009)

    Google Scholar 

  6. Bowers, M., Petrie, A., Holcomb, M.: Unleashing the potential of supply chain. MIT Sloan Manag. Rev. 59(1), 14–16 (2017). (1st edition)

    Google Scholar 

  7. Chen-Ritzo, C.-H., Ervolina, T., Harrison, T.P., Gupta, B.: Eur. J. Oper. Res. 205(3), 604–614 (2010)

    Google Scholar 

  8. Boken, V., Cracknell, A., Heathcote, R.: Monitoring and Predicting Agricultural Drought: A Global Study. Oxford University Press, New York (2005)

    Google Scholar 

  9. Australian Meat Processor Corporation. http://www.ampc.com.au/uploads/pdf/strategic-plans/42161_AMPC_RiskDocumentvLR.pdf

  10. van der Aalst, W.M.: Business process management: a comprehensive survey. ISRN Softw. Eng. 2013(4), 4–5 (2013). https://doi.org/10.1155/2013/507984

  11. Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.-J.: Big data in smart framing – a review. Agric. Syst. 153, 69–80 (2017)

    Article  Google Scholar 

  12. Aramyan, L.H., Oude Lansink, A.G.J.M., van der Vorst, J.G.A.J., van Kooten, O.: Performance measurement in agri-food supply chains: a case study. Supply Chain Manag. Int. J. 12(4), 304–315 (2007)

    Article  Google Scholar 

  13. Pham, X., Stack, M.: How data analytics is transforming agriculture. Bus. Horiz. 61, 125–133 (2018)

    Article  Google Scholar 

  14. Wang, G., Gunasekaran, A., Papadopoulos, T.: Big data analytics in logistics and supply chain management: certain investigations for research and applications. Int. J. Prod. Econ. 176, 98–110 (2016)

    Article  Google Scholar 

  15. Braziotis, C., Tannock, J.D.T., Bourlakis, M.: Strategic and operational considerations for the Extended Enterprise: insights from the aerospace industry. Prod. Plann. Control 28(4), 267–280 (2017). https://doi.org/10.1080/09537287.2016.1268274

    Article  Google Scholar 

  16. Delipinar, G.E., Kocaoglu, B.: Using SCOR model to gain competitive advantage: a literature review. Procedia Soc. Behav. Sci. 229, 398–406 (2016). https://doi.org/10.1016/j.sbspro.2016.07.150

    Article  Google Scholar 

  17. Stentoft, J., Rajkumar, C.: Balancing theoretical and practical relevance in supply chain management research. Int. J. Phys. Distrib. Logist. Manag. 48(5), 504–523 (2018). https://doi.org/10.1108/IJPDLM-01-2018-0020

    Article  Google Scholar 

  18. Lapide, L.: Competitive supply chains: excellence. Supply Chain Manag. Rev. 19(4), 4–5 (2015)

    Google Scholar 

  19. Becker, T., Intoyoad, W.: Context aware process mining in logistics. Procedia CIRP 63, 557–562 (2017)

    Article  Google Scholar 

  20. Keates, O.: Integrating IoT with BPM to provide value to cattle farmers in Australia. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 119–129. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_11

    Chapter  Google Scholar 

  21. Golini, R., Moretto, A., Caniato, F., Caridi, M., Kalchschmidt, M.: Developing sustainability in the italian meat supply chain: an empirical investigation. Int. J. Prod. Res. 55(4), 1183–1209 (2017). https://doi.org/10.1080/00207543.2016.1234724

    Article  Google Scholar 

  22. Simons, D., Francis, M., Bourlakis, M., Fearne, A.: Identifying the determinants of value in the U.K. red meat industry: a value chain analysis approach. J. Chain Netw. Sci. 3(2), 109–121 (2008)

    Article  Google Scholar 

  23. Gerke, K., Claus, A., Mendling, J.: Process mining of RFID-based supply chains. In: 2009 IEEE Conference on Commerce and Enterprise Computing, pp. 285–292. IEEE, Vienna (2009). https://doi.org/10.1109/cec.2009.72

  24. Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25(1), 77–89 (2016). https://doi.org/10.1057/ejis.2014.36

    Article  Google Scholar 

  25. Verdouw, C.N., Beulens, A.J.M., Trienekens, J.H., Wolfert, J.: Process modelling in demand-driven supply chains: a reference model for the fruit industry. Comput. Electron. Agric. 73(2), 174–187 (2010). https://doi.org/10.1016/j.compag.2010.05.005

    Article  Google Scholar 

  26. https://www.mla.com.au/research-and-development/Genetics-and-breeding/

  27. National Livestock Identification System. https://www.mla.com.au/meat-safety-and-traceability/red-meat-integrity-system/about-the-national-livestock-identification-system-2015/

  28. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2016). https://doi.org/10.1007/s10270-016-0545-x

    Article  Google Scholar 

  29. Leemans, S., Poppe, E., Wynn, M.: Directly follows-based process mining: a tool. In: Burattin, A., van Zelst, S., Polyvyanyy, A. (eds.) Proceedings of the ICPM Demo Track 2019. CEUR Workshop Proceedings, vol. 2374, pp. 9–12. Sun SITE Central Europe (2019). http://www.ceur-ws.org/

  30. de Leoni, M., van der Aalst, W.M.P.: Data-aware process mining: discovering decisions in processes using alignments. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, March 2013, pp. 1454–1461 (2013). https://doi.org/10.1145/2480362.2480633

  31. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Decision mining revisited - discovering overlapping rules. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 377–392. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_23

    Chapter  Google Scholar 

  32. https://www.mla.com.au/news-and-events/industry-news/archived/2016/meeting-minimum-growth-rates-for-heifers/

  33. Greiger, M., Harrer, S., Lenhard, J., Wirtz, G.: BPMN 2.0: the state of support and implementation. Future Gener. Comput. Syst. 80, 250–262 (2018)

    Article  Google Scholar 

  34. Median, A., Garcia-Garcia, J.A., Escalona, M.J., Ramos, I.: A survey on business process management suites. Comput. Stand. Interfaces 51, 71–86 (2017)

    Article  Google Scholar 

  35. van der Aalst, W., Bolt, A., van Zelst, S.: RapidProM: mine your processes and not just your data (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen Keates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keates, O., Wynn, M.T., Bandara, W. (2020). A Multi Perspective Framework for Enhanced Supply Chain Analytics. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds) Business Process Management. BPM 2020. Lecture Notes in Computer Science(), vol 12168. Springer, Cham. https://doi.org/10.1007/978-3-030-58666-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58666-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58665-2

  • Online ISBN: 978-3-030-58666-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics