Skip to main content

Study of Region Convolutional Neural Network Deep Learning for Fire Accident Detection

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020 (AISI 2020)

Abstract

Fires accident is one of the disasters which take human life, infrastructure destruction due to its violence or to the delay for the rescue. Object detection is one of the popular topics in recent years, which can play the robust impact for detecting fire and more efficient to provide information to this disaster. However, this study presents the fire detection processed using region convolution neural network. We will train images of different objects in fire using ground truth labeling. After labeling images and determining the region of interest (ROI), the features are extracted from training data, and the detector will be trained and will work to each and image of fire. To validate the effectiveness of this system the algorithm demonstrates images taken from our dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brushlinsky, N.N., Aherens, M., Skolov, S.V., Wagner, P.: World fire statistics. Russia, International Association of Fire and Rescue Service (CTIF) (2019)

    Google Scholar 

  2. Chih-Cheng, L., Chang, K.-C., Chen, C.-Y.: Study of high-tech process furnace using inherently safer design strategies (III) advanced thin film process and reduction of power consumption control. J. Loss Prev. Process Ind. 43, 280–291 (2015)

    Google Scholar 

  3. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  4. Liang, M., Hu, X.: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3367–3375 (2015)

    Google Scholar 

  5. Chang, K.C., Chu, K.C., Wang, H.C., Lin, Y.C., Pan, J.S.: Energy saving technology of 5G base station based on internet of things collaborative control. IEEE Access 8, 32935–32946 (2020)

    Article  Google Scholar 

  6. Symeonidis, G.: Recurrent attention for deep neural object detection. Springer (2019)

    Google Scholar 

  7. Kriszhevsky, A., Sutkever, I., Hinton, G.E.: Image classification with deep convolution neural network. In: Advances in Neural Information Processing System (NIPS), pp. 1097–1105 (2012)

    Google Scholar 

  8. UÄŸur Töreyin, B., DedeoÄŸlu, Y., GĂ¼dĂ¼kbay, U., Enis Çetin, A.: Computer vision based method for real-time fire and flame detection, pp. 49–57. Elsevier (2006)

    Google Scholar 

  9. Enis Çetin, A., Dimitropoulos, K., Gouverneur, B., Grammalidis, N., GĂ¼nay, O., Hakan Habiboǧlu, Y., Uǧur Töreyin, B., Verstockt, S.: Video fire detection. Rev. Digit. Signal Process. 23(6), 1827–1843 (2013). https://doi.org/10.1016/j.dsp.2013.07.003. ISSN 1051-2004

    Article  Google Scholar 

  10. Muhammad, K., Ahmad, J., Mehmood, I., Rho, S., Baik, S.W.: Convolutional neural networks based fire detection in surveillance videos. IEEE Access 6, 18174–18183 (2018)

    Article  Google Scholar 

  11. Chu, K.C., Horng, D.J., Chang, K.C.: Numerical optimization of the energy consumption for wireless sensor networks based on an improved ant colony algorithm. J. IEEE Access 7, 105562–105571 (2019)

    Article  Google Scholar 

  12. UÄŸur Töreyin, B., DedeoÄŸlu, Y., GĂ¼dĂ¼kbay, U., Enis Çetin, A.: Computer vision based method for real-time fire and flame detection (2006)

    Google Scholar 

  13. Chang, K.-C., Chu, K.-C., Wang, H.-C., Lin, Y.-C., Pan, J.-S.: Agent-based middleware framework using distributed CPS for improving resource utilization in smart city. Future Gener. Comput. Syst. 108, 445–453 (2020). https://doi.org/10.1016/j.future.2020.03.006. ISSN 0167-739X

    Article  Google Scholar 

  14. Lee, W., Kim, S., Lee, Y.-T., Lee, H.-W., Choi, M.: Deep neural networks for wild fire detection with unmanned aerial vehicle. In: 2017 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, pp. 252–253 (2017)

    Google Scholar 

  15. Dener, M., Ă–zkök, Y., BostancıoÄŸlu, C.: Fire detection systems in wireless sensor networks. Procedia – Soc. Behav. Sci. 195, 1846–1850 (2015). https://doi.org/10.1016/j.sbspro.2015.06.408. ISSN 1877-0428

    Article  Google Scholar 

  16. Girshick, R., Donahue, J., Darrell, T., Malik, J.: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587 (2014)

    Google Scholar 

  17. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2016)

    Article  Google Scholar 

  18. Jadon, A., Omama, M., Varshney, A., Ansari, M.S., Sharma, R.: FireNet: a specialized lightweight fire & smoke detection model for real-time IoT applications. In: EEE (2019)

    Google Scholar 

  19. Muhammad, K., Ahmad, J., Baik, S.W.: Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing 288, 30–42 (2018)

    Article  Google Scholar 

  20. Weinzaepfel, P., Csurka, G., Cabon, Y., Humenberger, M.: Visual localization by learning objects-of-interest dense match regression. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15634–5643 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Chi Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jean d’Amour, N. et al. (2021). Study of Region Convolutional Neural Network Deep Learning for Fire Accident Detection. In: Hassanien, A.E., Slowik, A., SnĂ¡Å¡el, V., El-Deeb, H., Tolba, F.M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020. AISI 2020. Advances in Intelligent Systems and Computing, vol 1261. Springer, Cham. https://doi.org/10.1007/978-3-030-58669-0_13

Download citation

Publish with us

Policies and ethics