Skip to main content

A Convergence Analysis of a Multistep Method Applied to an Advection-Diffusion Equation in 1-D

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12249))

Included in the following conference series:

  • 1478 Accesses

Abstract

This paper describes a method for convection-dominated fluid or heat flows. This method relies on the Hopmoc method and backward differentiation formulas. The present study discusses the convergence of the method when applied to a convection-diffusion equation in 1-D. The convergence analysis conducted produced sufficient conditions for the consistency analysis and used the von Neumann analysis to demonstrate that the method is stable. Moreover, the numerical results confirmed the conducted convergence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oliveira, S., Kischinhevsky, M., Gonzaga de Oliveira, S.L.: Convergence analysis of the Hopmoc method. Int. J. Comput. Math. 86(8), 1375–1393 (2009)

    Google Scholar 

  2. Cabral, F., Osthoff, C., Costa, G., Brandão, D.N., Kischinhevsky, M., Gonzaga de Oliveira, S.L.: Tuning up TVD Hopmoc method on Intel MIC Xeon Phi architectures with Intel Parallel Studio Tools. In: Proceedings of the International Symposium on Computer Architecture and High Performance Computing Workshops (SBACPADW), Campinas, São Paulo, 17–20 October 2017, pp. 19–24 (2017)

    Google Scholar 

  3. Gordon, P.: Nonsymmetric difference equations. SIAM J. Appl. Math. 13, 667–673 (1965)

    Article  MathSciNet  Google Scholar 

  4. Gourlay, P.: Hopscotch: a fast second order partial differential equation solver. IMA J. Appl. Math. 6(4), 375–390 (1970)

    Article  MathSciNet  Google Scholar 

  5. Douglas, J.J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19(5), 871–885 (1955)

    Article  MathSciNet  Google Scholar 

  6. Robaina, D., Gonzaga de Oliveira, S., Kischinhevsky, M., Osthoff, C., Sena, A.: Numerical simulations of the 1-D modified Burgers equation. In: Proceedings of the 2019 Winter Simulation Conference (WSC), National Harbor, EUA, pp. 3231–3242 (2019)

    Google Scholar 

  7. Zhang, Z.: The multistep finite difference fractional steps method for a class of viscous wave equations. Math. Methods Appl. Sci. 34, 442–454 (2011)

    Article  MathSciNet  Google Scholar 

  8. Ding, H.F., Zhang, Y.X.: A new difference scheme with high accuracy and absolute stability for solving convection diffusion equations. J. Comput. Appl. Math. 230(2), 600–606 (2009)

    Article  MathSciNet  Google Scholar 

  9. Abbott, M.B.: An Introduction to the Method of Characteristics. Thames and Hudson Ltda, London (1996)

    Google Scholar 

  10. Cabral, F., Osthoff, C., Kischinhevsky, M., Brandão, D.: Hybrid MPI/OpenMP/OpenACC implementations for the solution of convection diffusion equations with Hopmoc method. In: Apduhan, B., Rocha, A.M., Misra, S., Taniar, D., Gervasi, O., Murgante, B., (eds.) 14th International Conference on Computational Science and its Applications (ICCSA), CPS, pp. 196–199. IEEE (2014)

    Google Scholar 

  11. Charney, J.G., Fjortoft, R., von Neumann, J.: Numerical integration of barotropic vorticity equation. Tellus 2, 237–254 (1950)

    Article  MathSciNet  Google Scholar 

  12. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. T. Robaina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Robaina, D.T., de Oliveira, S.L.G., Kischinhevsky, M., Osthoff, C., Sena, A. (2020). A Convergence Analysis of a Multistep Method Applied to an Advection-Diffusion Equation in 1-D. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58799-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58798-7

  • Online ISBN: 978-3-030-58799-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics