Skip to main content

Characterizing and Analyzing the Relation Between Bin-Packing Problem and Tabu Search Algorithm

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12249))

Included in the following conference series:

Abstract

The relation between problem and solution algorithm presents a similar phenomenon in different research problems (optimization, decision, classification, ordering); the algorithm performance is very good in some cases of the problem, and very bad in other. Majority of related works have worked for predicting the most adequate algorithm to solve a new problem instance. However, the relation between problem and algorithm is not understood at all. In this paper a formal characterization of this relation is proposed to facilitate the analysis and understanding of the phenomenon. Case studies for Tabu Search algorithm and One Dimension Bin Packing problem were performed, considering three important sections of algorithm logical structure. Significant variables of problem structure and algorithm searching behavior from past experiments, metrics known by scientific community were considered (Autocorrelation Coefficient and Length) and significant variables of algorithm operative behavior were proposed. The models discovered in the case studies gave guidelines that permits to redesign algorithm logical structure, which outperforms to the original algorithm in an average of 69%. The proposed characterization for the relation problem-algorithm could be a formal procedure for obtaining guidelines that improves the algorithm performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garey, M.R., Jhonson, D.S.: Computers and Intractability, a Guide to the Theory of NP-completeness. W. H. Freeman and Company, New York (1979)

    Google Scholar 

  2. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization, Algorithms and Complexity. Prentice Hall, Upper Saddle River (1982)

    Google Scholar 

  3. Rendell, L., Cho, H.: Empirical learning as a function of concept character. Mach. Learn. 5, 267–298 (1990)

    Google Scholar 

  4. Lagoudakis, M., Littman, M.: Learning to select branching rules in the DPLL procedure for satisfiability. Electron. Notes Discrete Math. 9, 344–359 (2001)

    Article  Google Scholar 

  5. Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 1–25 (2009)

    Google Scholar 

  6. Wolpert, D., Macready, W.: No free lunch theorems for optimizations. IEEE Trans. Evol. Comput. 1(1), 67–82 (1996)

    Article  Google Scholar 

  7. Vanchipura, R., Sridharan, R.: Development and analysis of constructive heuristic algorithms for flow shop scheduling problems with sequence-dependent setup times. Int. J. Adv. Manuf. Technol. 67, 1337–1353 (2013)

    Article  Google Scholar 

  8. Hutter, F., Xu, L., Hoos, H., Leyton-Brown, K.: Algorithm runtime prediction: methods & evaluation. Artif. Intell. 206, 79–111 (2014)

    Article  MathSciNet  Google Scholar 

  9. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms for portfolio-based selection. In: Proceedings of the 25th National Conference on Artificial Intelligence (AAAI 2010), pp. 210–216 (2010)

    Google Scholar 

  10. Cayci, A., Menasalvas, E., Saygin, Y., Eibe, S.: Self-configuring data mining for ubiquitous computing. Inf. Sci. 246, 83–99 (2013)

    Article  Google Scholar 

  11. Pavón, R., Díaz, F., Laza, R., Luzón, M.: Experimental evaluation of an automatic parameter setting system. Expert Syst. Appl. 37, 5224–5238 (2010)

    Article  Google Scholar 

  12. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  13. Yeguas, E., Luzón, M., Pavón, R., Laza, R., Arroyo, G., Díaz, F.: Automatic parameter tuning for evolutionary algorithms using a Bayesian case-based reasoning system. Appl. Soft Comput. 18, 185–195 (2014)

    Article  Google Scholar 

  14. Ries, J., Beullens, P.: A semi-automated design of instance-based fuzzy parameter tuning for metaheuristics based on decision tree induction. J. Oper. Res. Soc. 66(5), 782–793 (2015)

    Article  Google Scholar 

  15. Yong, X., Feng, D., Rongchun, Z.: Optimal selection of image segmentation algorithms based on performance prediction. In: Proceedings of the Pan-Sydney Area Workshop on Visual Information Processing, pp. 105–108. Australian Computer Society, Inc. (2003)

    Google Scholar 

  16. Pérez, J., Pazos, R.A., Frausto, J., Rodríguez, G., Romero, D., Cruz, L.: A statistical approach for algorithm selection. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 417–431. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24838-5_31

    Chapter  Google Scholar 

  17. Nikolić, M., Marić, F., Janičić, P.: Instance-based selection of policies for SAT solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_31

    Chapter  Google Scholar 

  18. Yuen, S., Zhang, X.: Multiobjective evolutionary algorithm portfolio: choosing suitable algorithm for multiobjective optimization problem. In: 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, pp. 1967–1973 (2014)

    Google Scholar 

  19. Munoz, M., Kirley, M., Halgamuge, S.: Exploratory landscape analysis of continuous space optimization problems using information content. IEEE Trans. Evol. Comput. 19(1), 74–87 (2015)

    Article  Google Scholar 

  20. Leyton-Brown, K., Hoos, H., Hutter, F., Xu, L.: Understanding the empirical hardness of np-complete problems. Mag. Commun. ACM 57(5), 98–107 (2014)

    Article  Google Scholar 

  21. Cruz, L., Gómez, C., Pérez, J., Landero, V., Quiroz, M., Ochoa, A.: Algorithm Selection: From Meta-Learning to Hyper-Heuristics. INTECH Open Access Publisher (2012)

    Google Scholar 

  22. Wagner, M., Lindauer, M., Misir, M., et al.: A case of study of algorithm selection for the travelling thief problem. J. Heuristics, 1–26 (2017)

    Google Scholar 

  23. Pérez, J., Cruz, L., Landero, V.: Explaining performance of the threshold accepting algorithm for the bin packing problem: a causal approach. Pol. J. Environ. Stud. 16(5B), 72–76 (2007)

    Google Scholar 

  24. Tavares, J.: Multidimensional knapsack problem: a fitness landscape analysis. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(3), 604–616 (2008)

    Article  Google Scholar 

  25. Pérez, J., et al.: An application of causality for representing and providing formal explanations about the behavior of the threshold accepting algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1087–1098. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69731-2_102

    Chapter  Google Scholar 

  26. Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP difficulty by learning from evolved instances. In: Blum, C., Battiti, R. (eds.) LION 2010. LNCS, vol. 6073, pp. 266–280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13800-3_29

    Chapter  Google Scholar 

  27. Quiroz, M., Cruz, L., Torrez, J., Gómez, C.: Improving the performance of heuristic algorithms based on exploratory data analysis. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Recent Advances on Hybrid Intelligent Systems, Studies in Computational Intelligence, vol. 452, pp. 361–375. Springer, Heidelberg (2013)

    Google Scholar 

  28. Landero, V., Pérez, J., Cruz, L., Turrubiates, T., Rios, D.: Effects in the algorithm performance from problem structure, searching behavior and temperature: a causal study case for threshold accepting and bin-packing problem. In: Misra, S., Gervasi, O., Murgante, B. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 152–166. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-24289-3_13

  29. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. The MIT Press, Cambridge (2001)

    Google Scholar 

  30. Beasley, J., E.: OR-Library. Brunel University (2006). http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpackinfo.html

  31. Scholl, A., Klein, R.: (2003). http://www.wiwi.uni-jena.de/Entscheidung/binpp/

  32. Glover, F.: Tabu search - Part I, first comprehensive description of tabu search. ORSA-J. Comput. 1(3), 190–206 (1989)

    Article  Google Scholar 

  33. Fleszar, K., Hindi, K.S.: New heuristics for one-dimensional bin packing. Comput. Oper. Res. 29, 821–839 (2002)

    Article  Google Scholar 

  34. Khuri, S., Schütz, M., Heitkötter, J.: Evolutionary heuristics for the bin packing problem. In: Artificial Neural Nets and Genetic Algorithms. Springer, Vienna (1995). https://doi.org/10.1007/978-3-7091-7535-4_75

  35. Merz, P., Freisleben, B.: Fitness landscapes and memetic algorithm design. In: New Ideas in Optimization, pp. 245–260. McGraw-Hill Ltd., UK (1999)

    Google Scholar 

  36. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: IJCAI, pp. 1022–1029 (1993)

    Google Scholar 

  37. Hall, M.A.: Feature selection for discrete and numeric class machine learning (1999)

    Google Scholar 

  38. Watson, J., Darrell, W., Adele, E.: Linking search space structure, run-time dynamics, and problem difficulty: a step toward demystifying tabu search. J. Artif. Intell. Res. 24, 221–261 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Landero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Landero, V., Ríos, D., Pérez, J., Cruz, L., Collazos-Morales, C. (2020). Characterizing and Analyzing the Relation Between Bin-Packing Problem and Tabu Search Algorithm. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58799-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58798-7

  • Online ISBN: 978-3-030-58799-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics