Skip to main content

Prediction of the Methane Production in Biogas Plants Using a Combined Gompertz and Machine Learning Model

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Biogas production is a complicated process and mathematical modeling of the process is essential in order to plan the management of the plants. Gompertz models can predict the biogas production, but in co-digestion, where many feedstocks are used it can be hard to obtain a sufficient calibration, and often more research is required in order to find the exact calibration parameters. The scope of this article is to investigate if machine learning approaches can be used to optimize the predictions of Gompertz models. Increasing the precision of the models is important in order to get an optimal usage of the resources and thereby ensure a more sustainable energy production. Three models were tested: A Gompertz model (Mean Absolute Percentage Error (MAPE) = 9.61%), a machine learning model (MAPE = 4.84%), and a hybrid model (MAPE = 4.52%). The results showed that the hybrid model could decrease the error in the predictions with 53% when predicting the methane production one day ahead. When encountering an offset in the predictions the reduction of the error was increased to 66%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xue, S., et al.: A systematic comparison of biogas development and related policies between China and Europe and corresponding insights. Renew. Sustain. Energy Rev. 117, 109474 (2020). https://doi.org/10.1016/j.rser.2019.109474

    Article  Google Scholar 

  2. Colla, L.M., et al.: Waste biomass and blended bioresources in biogas production. In: Treichel, H., Fongaro, G. (eds.) Improving Biogas Production. BBT, vol. 9, pp. 1–23. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10516-7_1

    Chapter  Google Scholar 

  3. Hagos, K., Zong, J., Li, D., Liu, C., Lu, X.: Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renew. Sustain. Energy Rev. 76, 1485–1496 (2017). https://doi.org/10.1016/j.rser.2016.11.184

    Article  Google Scholar 

  4. Scapini, T., et al.: Enzyme-mediated enhanced biogas yield. In: Treichel, H., Fongaro, G. (eds.) Improving Biogas Production. BBT, vol. 9, pp. 45–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10516-7_3

    Chapter  Google Scholar 

  5. Batstone, D.J., et al.: The IWA anaerobic digestion model no 1 (ADM1). Water Sci. Technol. 45, 65–73 (2002)

    Article  Google Scholar 

  6. Derbal, K., Bencheikh-lehocine, M., Cecchi, F., Meniai, A.-H., Pavan, P.: Application of the IWA ADM1 model to simulate anaerobic co-digestion of organic waste with waste activated sludge in mesophilic condition. Biores. Technol. 100, 1539–1543 (2009). https://doi.org/10.1016/j.biortech.2008.07.064

    Article  Google Scholar 

  7. Batstone, D.J., Puyol, D., Flores-Alsina, X., Rodríguez, J.: Mathematical modelling of anaerobic digestion processes: applications and future needs. Rev. Environ. Sci. Biotechnol. 14, 595–613 (2015). https://doi.org/10.1007/s11157-015-9376-4

    Article  Google Scholar 

  8. Arzate, J.A., et al.: Anaerobic digestion model (AM2) for the description of biogas processes at dynamic feedstock loading rates. Chem. Ing. Tec. 89, 686–695 (2017). https://doi.org/10.1002/cite.201600176

    Article  Google Scholar 

  9. Ripoll, V., Agabo-García, C., Perez, M., Solera, R.: Improvement of biomethane potential of sewage sludge anaerobic co-digestion by addition of “sherry-wine” distillery wastewater. J. Clean. Prod. 251, 119667 (2020). https://doi.org/10.1016/j.jclepro.2019.119667

    Article  Google Scholar 

  10. dos Santos, L.A., et al.: Methane generation potential through anaerobic digestion of fruit waste. J. Clean. Prod. 256, 120389 (2020). https://doi.org/10.1016/j.jclepro.2020.120389

  11. Hernández-Fydrych, V.C., Benítez-Olivares, G., Meraz-Rodríguez, M.A., Salazar-Peláez, M.L., Fajardo-Ortiz, M.C.: Methane production kinetics of pretreated slaughterhouse wastewater. Biomass Bioenerg. 130, 105385 (2019). https://doi.org/10.1016/j.biombioe.2019.105385

    Article  Google Scholar 

  12. Akbaş, H., Bilgen, B., Turhan, A.M.: An integrated prediction and optimization model of biogas production system at a wastewater treatment facility. Biores. Technol. 196, 566–576 (2015). https://doi.org/10.1016/j.biortech.2015.08.017

    Article  Google Scholar 

  13. Beltramo, T., Klocke, M., Hitzmann, B.: Prediction of the biogas production using GA and ACO input features selection method for ANN model. Inf. Process. Agric. 6, 349–356 (2019). https://doi.org/10.1016/j.inpa.2019.01.002

    Article  Google Scholar 

  14. Tufaner, F., Demirci, Y.: Prediction of biogas production rate from anaerobic hybrid reactor by artificial neural network and nonlinear regressions models. Clean Techn. Environ. Policy 22, 713–724 (2020). https://doi.org/10.1007/s10098-020-01816-z

    Article  Google Scholar 

  15. De Clercq, D., Wen, Z., Fei, F., Caicedo, L., Yuan, K., Shang, R.: Interpretable machine learning for predicting biomethane production in industrial-scale anaerobic co-digestion. Sci. Total Environ. 712, 134574 (2020). https://doi.org/10.1016/j.scitotenv.2019.134574

    Article  Google Scholar 

  16. De Clercq, D., et al.: Machine learning powered software for accurate prediction of biogas production: a case study on industrial-scale Chinese production data. J. Clean. Prod. 218, 390–399 (2019). https://doi.org/10.1016/j.jclepro.2019.01.031

    Article  Google Scholar 

  17. Gompertz, B.: XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S. & c. Phil. Trans. R. Soc. Lon. 115, 513–583 (1825). https://doi.org/10.1098/rstl.1825.0026

  18. Zwietering, M.H., Jongenburger, I., Rombouts, F.M., van’t Riet, K.: Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–1881 (1990)

    Google Scholar 

  19. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 2011, 2825–2830 (2011)

    Google Scholar 

  20. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996). https://doi.org/10.1007/bf00058655

    Article  MATH  Google Scholar 

  21. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997). https://doi.org/10.1006/jcss.1997.1504

    Article  MathSciNet  MATH  Google Scholar 

  22. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/a:1010933404324

    Article  MATH  Google Scholar 

  23. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002). https://doi.org/10.1016/s0167-9473(01)00065-2

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, H.: The optimality of Naive Bayes (2004). https://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf

  25. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1

    Article  MATH  Google Scholar 

  26. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011). https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  27. Kloss, A., Schaal, S., Bohg, J.: Combining learned and analytical models for predicting action effects. arXiv:1710.04102[cs] (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bolette D. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hansen, B.D., Tamouk, J., Tidmarsh, C.A., Johansen, R., Moeslund, T.B., Jensen, D.G. (2020). Prediction of the Methane Production in Biogas Plants Using a Combined Gompertz and Machine Learning Model. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58799-4_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58798-7

  • Online ISBN: 978-3-030-58799-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics