Skip to main content

AISRA: Anthropomorphic Robotic Hand for Small-Scale Industrial Applications

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12249))

Included in the following conference series:

Abstract

We describe the design of the multi-finger anthropomorphic robotic hand for small-scale industrial applications, called AISRA (Anthropomorphic Interface for Stimulus Robust Applications), which can feel and sense the object that it is holding. The robotic hand was printed using the 3D printer and includes the servo bed for finger movement. The data for object recognition was collected using Leap Motion controller, and Naïve Bayes classifier was used for training and classification. We have trained the robotic hand on several monotonous objects used in daily life using supervised machine learning techniques and the gesture data obtained from the Leap Motion controller. The mean accuracy of object recognition achieved is 92.1%. The Naïve Bayes algorithm is suitable for using with the robotic hand to predict the shape objects in its hands based on the angular position of its figures. Leap Motion controller provides accurate results and helps to create a dataset of object examples in various forms for the AISRA robotic hand, and can be used to help developing and training 3D-printed anthropomorphic robotic hands. The experiments in object grasping experiments demonstrated that the AISRA robotic hand can grasp objects with different size and shape, and verified the feasibility of robot hand design using low-cost 3D printing technology. The implementation can be used for small-scale industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yanco, H.A., Norton, A., Ober, W., Shane, D., Skinner, A., Vice, J.: Analysis of human-robot interaction at the DARPA robotics challenge trials. J. Field Rob. 32(3), 420–444 (2015). https://doi.org/10.1002/rob.21568

    Article  Google Scholar 

  2. Kawasaki, H., Mouri, T.: Humanoid robot hand and its applied research. J. Robot. Mechatron. 31(1), 16–26 (2019). https://doi.org/10.20965/jrm.2019.p0016

    Article  Google Scholar 

  3. Juočas, L., Raudonis, V., Maskeliūnas, R., Damaševičius, R., Woźniak, M.: Multi-focusing algorithm for microscopy imagery in assembly line using low-cost camera. Int. J. Adv. Manuf. Technol. 102(9), 3217–3227 (2019). https://doi.org/10.1007/s00170-019-03407-9

    Article  Google Scholar 

  4. Abdelaal, A.E., Sakr, M., Avinash, A., Mohammed, S.K., Bajwa, A.K., Sahni, M., Salcudean, S.E.: Play me back: a unified training platform for robotic and laparoscopic surgery. IEEE Rob. Autom. Lett. 4(2), 554–561 (2019). https://doi.org/10.1109/lra.2018.2890209

    Article  Google Scholar 

  5. Maskeliunas, R., Damaševicius, R., Segal, S.: A review of internet of things technologies for ambient assisted living environments. Future Internet 11(12) (2019). https://doi.org/10.3390/fi11120259

  6. Al-Madani, B., Svirskis, M., Narvydas, G., Maskeliūnas, R., Damaševičius, R.: Design of fully automatic drone parachute system with temperature compensation mechanism for civilian and military applications. J. Adv. Transp. 2018 (2018) https://doi.org/10.1155/2018/2964583

  7. Plauska, I., Damaševičius, R.: Educational robots for internet-of-things supported collaborative learning. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2014. CCIS, vol. 465, pp. 346–358. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11958-8_28

    Chapter  Google Scholar 

  8. Burbaite, R., Stuikys, V., Damasevicius, R.: Educational robots as collaborative learning objects for teaching computer science. In: IEEE International Conference on System Science and Engineering, ICSSE 2013, pp. 211–216 (2013). https://doi.org/10.1109/ICSSE.2013.6614661

  9. Dhawan, A., Bhat, A., Sharma, S., Kaura, H.K.: Automated robot with object recognition and handling features. Int. J. Electron. Comput. Sci. Eng., 861–873 (2013)

    Google Scholar 

  10. Ben-Tzvi, P., Ma, Z.: Sensing and force-feedback exoskeleton (SAFE) robotic glove. IEEE Trans. Neural Syst. Rehabil. Eng. 23(6), 992–1002 (2015)

    Article  Google Scholar 

  11. Wu, L., Lan, T., Li, X.: Design and production of a 3D printing robot hand with three underactuated fingers. In: Deng, Z. (ed.) CIAC 2017. LNEE, vol. 458, pp. 87–95. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6445-6_10

    Chapter  Google Scholar 

  12. Hu, B., Xiao, N.-f.: Kinect sensor-based motion control for humanoid robot hands. In: Qiao, F., Patnaik, S., Wang, J. (eds.) ICMIR 2017. AISC, vol. 690, pp. 540–546. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65978-7_81

    Chapter  Google Scholar 

  13. Durairajah, V., Gobee, S., Rauf, W., Ngie, K.S., Lim, J.H.A.: Design and development of low cost hand exoskeleton for rehabilitation. In: Ibrahim, F., Usman, J., Ahmad, M.Y., Hamzah, N., Teh, S.J. (eds.) ICIBEL 2017. IP, vol. 67, pp. 107–110. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7554-4_18

    Chapter  Google Scholar 

  14. Tan, N., Gu, X., Gu, X., Ren, H.: Simultaneous robot-world, sensor-tip, and kinematics calibration of an underactuated robotic hand with soft fingers. IEEE Access 6, 22705–22715 (2017). https://doi.org/10.1109/ACCESS.2017.2781698

    Article  Google Scholar 

  15. Senthil Kumar, K., Ren, H., Chan, Y.H.: Soft tactile sensors for rehabilitation robotic hand with 3D printed folds. In: Ibrahim, F., Usman, J., Ahmad, M.Y., Hamzah, N., Teh, S.J. (eds.) ICIBEL 2017. IP, vol. 67, pp. 55–60. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7554-4_9

    Chapter  Google Scholar 

  16. Zhang, J., Zhang, X., Li, Y.: Research and design of a multi-fingered hand made of hyperelastic material. Assembly Autom. 38(3), 249–258 (2018). https://doi.org/10.1108/AA-03-2017-042

    Article  Google Scholar 

  17. Park, Y., Jo, I., Lee, J., Bae, J.: A dual-cable hand exoskeleton system for virtual reality. Mechatronics 49, 177–186 (2018). https://doi.org/10.1016/j.mechatronics.2017.12.008

    Article  Google Scholar 

  18. Hansen, C., Gosselin, F., Ben Mansour, K., Devos, P., Marin, F.: Design-validation of a hand exoskeleton using musculoskeletal modelling. Appl. Ergon. 68, 283–288 (2018). https://doi.org/10.1016/j.apergo.2017.11.015

    Article  Google Scholar 

  19. Gailey, A., Godfrey, S.B., Breighner, R., Andrews, K., Zhao, K., Bicchi, A., Santello, M.: Grasp performance of a soft synergy-based prosthetic hand: a pilot study. IEEE Trans. Neural Syst. Rehabil. Eng. 25(12), 2407–2417 (2017). https://doi.org/10.1109/TNSRE.2017.2737539

    Article  Google Scholar 

  20. Ergene, M.C., Durdu, A.: Robotic hand grasping of objects classified by using support vector machine and bag of visual words. In: International Artificial Intelligence and Data Processing Symposium, IDAP 2017, Malatya, pp. 1–5 (2017). https://doi.org/10.1109/idap.2017.8090228

  21. Zeng, B., Fan, S., Jiang, L., Liu, H.: Design and experiment of a modular multisensory hand for prosthetic applications. Ind. Rob. 44(1), 104–113 (2017). https://doi.org/10.1108/IR-04-2016-0115

    Article  Google Scholar 

  22. Zhang, L., Shen, P., Zhu, G., Wei, W., Song, H.: A fast robot identification and mapping algorithm based on Kinect sensor. Sensors 15(8), 19937–19967 (2015). https://doi.org/10.3390/s150819937

    Article  Google Scholar 

  23. Vaitkevičius, A., Taroza, M., Blažauskas, T., Damaševičius, R., Maskeliunas, R., Woźniak, M.: Recognition of American sign language gestures in a virtual reality using leap motion. Appl. Sci. 9(3), 445 (2019). https://doi.org/10.3390/app9030445

  24. Hand, D.J., Yu, K.: Idiot’s Bayes—not so stupid after all? Int. Stat. Rev. 69(3), 385–398 (2001)

    MATH  Google Scholar 

  25. Gama Melo, E.N., Aviles Sanchez, O.F., Amaya Hurtado, D.: Anthropomorphic robotic hands: a review. Ingeniería y Desarrollo 32(2), 279–313 (2014)

    Article  Google Scholar 

  26. Yu, Z., Gu, J.: A Survey on Real-time Controlled Multi-fingered Robotic Hand. In: Canadian Conference on Electrical and Computer Engineering, Halifax, Canada, pp. 975–980 (2008). https://doi.org/10.1109/ccece.2008.4564681

  27. Kappassov, Z., Khassanov, Y., Saudabayev, A., Shintemirov, A., Varol, H.A.: Semi-anthropomorphic 3D printed multigrasp hand for industrial and service robots. In: IEEE International Conference on Mechatronics and Automation, Takamatsu, pp. 1697–1702 (2013). https://doi.org/10.1109/icma.2013.6618171

  28. Bai, G., Rojas, N.: Self-adaptive monolithic anthropomorphic finger with teeth-guided compliant cross-four-bar joints for underactuated hands. In: IEEE-RAS International Conference on Humanoid Robots, pp. 145–152 (2019). https://doi.org/10.1109/humanoids.2018.8624971

  29. Li, X.-L., Wu, L.-C., Lan, T.-Y.: A 3D-printed robot hand with three linkage-driven underactuated fingers. Int. J. Autom. Comput. 15(5), 593–602 (2018). https://doi.org/10.1007/s11633-018-1125-z

    Article  Google Scholar 

  30. Suresh, A., Gaba, D., Bhambri, S., Laha, D.: Intelligent multi-fingered dexterous hand using virtual reality (VR) and robot operating system (ROS). In: Kim, J.-H., et al. (eds.) RiTA 2017. AISC, vol. 751, pp. 459–474. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-78452-6_37

    Chapter  Google Scholar 

  31. Burbaite, R., Bespalova, K., Damaševičius, R., Štuikys, V.: Context-aware generative learning objects for teaching computer science. Int. J. Eng. Educ. 30(4), 929–936 (2014)

    Google Scholar 

  32. Damaševičius, R., Narbutaite, L., Plauska, I., Blažauskas, T.: Advances in the use of educational robots in project-based teaching. TEM J. 6(2), 342–348 (2017). https://doi.org/10.18421/TEM62-20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robertas Damaševičius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Devaraja, R.R., Maskeliūnas, R., Damaševičius, R. (2020). AISRA: Anthropomorphic Robotic Hand for Small-Scale Industrial Applications. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58799-4_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58798-7

  • Online ISBN: 978-3-030-58799-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics