Skip to main content

A Big-Data Variational Bayesian Framework for Supporting the Prediction of Functional Outcomes in Wake-Up Stroke Patients

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Prognosis in Wake-up ischemic stroke (WUS) is important for guiding treatment and rehabilitation strategies, in order to improve recovery and minimize disability. For this reason, there is growing interest on models to predict functional recovery after acute ischemic events in order to personalize the therapeutic intervention and improve the final functional outcome. The aim of this preliminary study is to evaluate the possibility to predict a good functional outcome, in terms of modified Rankin Scale (mRS ≤ 2), in thrombolysis treated WUS patients by Bayesian analysis of clinical, demographic and neuroimaging data at admission. The study was conducted on 54 thrombolysis treated WUS patients. The Variational Bayesian logistic regression with Automatic Relevance Determination (VB-ARD) was used to produce model and select informative features to predict a good functional outcome (mRS ≤ 2) at discharge. The produced model showed moderately high 10 × 5-fold cross validation accuracy of 71% to predict outcome. The sparse model highlighted the relevance of NIHSS at admission, age, TACI stroke syndrome, ASPECTs, ischemic core CT Perfusion volume, hypertension and diabetes mellitus. In conclusion, in this preliminary study we assess the possibility to model the prognosis in thrombolysis treated WUS patients by using VB ARD. The identified features related to initial neurological deficit, history of diabetes and hypertension, together with necrotic tissue relate ASPECT and CTP core volume neuroimaging features, were able to predict outcome with moderately high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorelick, P.B.: The global burden of stroke: persistent and disabling. Lancet Neurol. 18(5), 417–418 (2019)

    Article  Google Scholar 

  2. Mackey, J., Kleindorfer, D., Sucharew, H., et al.: Population-based study of wake-up strokes. Neurology 76, 1662–1667 (2011)

    Article  Google Scholar 

  3. Thomalla, G., Fiebach, J.B., Ostergaard, L., et al.: A multicenter, randomized, double-blind, placebo-controlled trial to test efficacy and safety of magnetic resonance imaging-based thrombolysis in wake-up stroke (WAKE-UP). Int. J. Stroke 9, 829–836. https://doi.org/10.1111/ijs.12011

  4. Vilela, P., Rowley, H.A.: Brain ischemia: CT and MRI techniques in acute ischemic stroke. Eur. J. Radiol. 96, 162–172 (2017)

    Article  Google Scholar 

  5. Furlanis, G., et al.: Wake-up stroke: thrombolysis reduces ischemic lesion volume and neurological deficit. J. Neurol. 267(3), 666–673 (2019). https://doi.org/10.1007/s00415-019-09603-7

    Article  Google Scholar 

  6. Caruso, P., et al.: Wake-up stroke and CT perfusion: effectiveness and safety of reperfusion therapy. Neurol. Sci. 39(10), 1705–1712 (2018). https://doi.org/10.1007/s10072-018-3486-z

    Article  Google Scholar 

  7. Peisker, T., Koznar, B., Stetkarova, I., et al.: Acute stroke therapy: a review. Trends Cardiovasc. Med. 27, 59–66 (2017)

    Article  Google Scholar 

  8. Stragapede, L., Furlanis, G., Ajčević, M., et al.: Brain oscillatory activity and CT perfusion in hyper-acute ischemic stroke. J. Clin. Neurosci. 69, 184–189 (2019). https://doi.org/10.1016/j.jocn.2019.07.068

    Article  Google Scholar 

  9. Ma, H., Campbell, B.C.V., Parsons, M.W., et al.: Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N. Engl. J. Med. 380, 1795–1803 (2019). https://doi.org/10.1056/NEJMoa1813046

    Article  Google Scholar 

  10. Bentes, C., Peralta, A.R., Viana, P., et al.: Quantitative EEG and functional outcome following acute ischemic stroke. Clin. Neurophysiol. 129(8), 1680–1687 (2018)

    Article  Google Scholar 

  11. Banks, J.L., Marotta, C.A.: Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials: a literature review and synthesis. Stroke 38(3), 1091–1096 (2007)

    Article  Google Scholar 

  12. Caruso, P., Ajčević, M., Furlanis, G., et al.: Thrombolysis safety and effectiveness in acute ischemic stroke patients with pre-morbid disability. J. Clin. Neurosci. 72, 180–184 (2020). https://doi.org/10.1016/j.jocn.2019.11.047

    Article  Google Scholar 

  13. Saver, J.L., Filip, B., Hamilton, S., et al.: Improving the reliability of stroke disability grading in clinical trials and clinical practice: the Rankin Focused Assessment (RFA). Stroke 41(5), 992–995 (2010)

    Article  Google Scholar 

  14. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group: Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 333, 1581–1588 (1995)

    Google Scholar 

  15. Bamford, J., Sandercock, P., Dennis, M., et al.: Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 337(8756), 1521–1526 (1991)

    Article  Google Scholar 

  16. Adams Jr., H.P., Davis, P.H., Leira, E.C., et al.: Baseline NIH Stroke Scale score strongly predicts outcome after stroke: a report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology 53, 126–131 (1999). https://doi.org/10.1212/wnl.53.1.126

    Article  Google Scholar 

  17. Barber, P.A., Demchuk, A.M., Zhang, J., Buchan, A.M., for the ASPECTS Study Group: The validity and reliability of a novel quantitative CT score in predicting outcome in hyperacute stroke prior to thrombolytic therapy. Lancet 355, 1670–1674 (2000)

    Google Scholar 

  18. Furlanis, G., Ajčević, M., Stragapede, L., et al.: Ischemic volume and neurological deficit: correlation of computed tomography perfusion with the National Institutes of Health Stroke Scale Score in acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 27(8), 2200–2207 (2018). https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.04.003

    Article  Google Scholar 

  19. Granato, A., D’Acunto, L., Ajčević, M., et al.: A novel Computed Tomography Perfusion-based quantitative tool for evaluation of perfusional abnormalities in migrainous aura stroke mimic. Neurol. Sci. (2020). https://doi.org/10.1007/s10072-020-04476-5

  20. Wintermark, M., Flanders, A.E., Velthuis, B., et al.: Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 37, 979–985 (2006)

    Article  Google Scholar 

  21. Treder, M.S., Blankertz, B.: (C)overt attention and visual speller design in an ERP-based brain-computer interface. Behav. Brain Funct. (2010). https://doi.org/10.1186/1744-9081-6-28

    Article  Google Scholar 

  22. Drugowitsch, J.: Variational Bayesian inference for linear and logistic regression. arXiv e-prints (2013)

    Google Scholar 

  23. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  24. MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992)

    Article  Google Scholar 

  25. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0745-0

    Book  MATH  Google Scholar 

  26. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Jaakkola, T.S., Jordan, M.M.: Bayesian parameter estimation via variational methods. Stat. Comput. 10, 25–37 (2000). https://doi.org/10.1023/A:1008932416310

    Article  Google Scholar 

  28. Zikopoulos, P., Eaton, C.: Understanding Big Data Analytics for Enterprise Class Hadoop and Streaming Data. McGraw Hill, New York (2012)

    Google Scholar 

  29. Cuzzocrea, A., Moussa, R., Xu, G.: OLAP*: effectively and efficiently supporting parallel OLAP over big data. In: Cuzzocrea, A., Maabout, S. (eds.) MEDI 2013. LNCS, vol. 8216, pp. 38–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41366-7_4

    Chapter  Google Scholar 

  30. Chatzimilioudis, G., Cuzzocrea, A., Gunopulos, D., Mamoulis, N.: A novel distributed framework for optimizing query routing trees in wireless sensor networks via optimal operator placement. J. Comput. Syst. Sci. 79(3), 349–368 (2013)

    Article  MathSciNet  Google Scholar 

  31. Cuzzocrea, A.: Combining multidimensional user models and knowledge representation and management techniques for making web services knowledge-aware. Web Intell. Agent Syst. 4(3), 289–312 (2006)

    Google Scholar 

  32. Cuzzocrea, A., Bertino, E.: Privacy preserving OLAP over distributed XML data: a theoretically-sound secure-multiparty-computation approach. J. Comput. Syst. Sci. 77(6), 965–987 (2011)

    Article  MathSciNet  Google Scholar 

  33. Cuzzocrea, A., Russo, V.: Privacy preserving OLAP and OLAP security. In: Encyclopedia of Data Warehousing and Mining, pp. 1575–1581 (2009)

    Google Scholar 

  34. Wang, L., Alexander, C.A.: Stroke care and the role of big data in healthcare and stroke. Rehabil. Sci. 1(1), 16–24 (2016)

    Google Scholar 

  35. Nishimura, A., Nishimura, K., Kada, A., Iihara, K., J-ASPECT Study Group: Status and future perspectives of utilizing big data in neurosurgical and stroke research. Neurol. Med.-Chir. 56(11), 655–663 (2016)

    Google Scholar 

  36. Burke Quinlan, E., Dodakian, L., See, J., et al.: Neural function, injury, and stroke subtype predict treatment gains after stroke. Ann. Neurol. 77, 132–145 (2015)

    Article  Google Scholar 

  37. Spyroglou, I.I., Spöck, G., Chatzimichail, E.A., et al.: A Bayesian logistic regression approach in asthma persistence prediction. Epidemiol. Biostat. Public Health 15(1), e12777 (2018)

    Google Scholar 

  38. Ashby, D.: Bayesian statistics in medicine: a 25 year review. Stat. Med. 25(21), 3589–3631 (2006)

    Article  MathSciNet  Google Scholar 

  39. Miladinović, A., et al.: Slow cortical potential BCI classification using sparse variational Bayesian logistic regression with automatic relevance determination. In: Henriques, J., Neves, N., de Carvalho, P. (eds.) MEDICON 2019. IP, vol. 76, pp. 1853–1860. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31635-8_225

    Chapter  Google Scholar 

  40. Weimar, C., König, I.R., Kraywinkel, K., et al.: Age and National Institutes of Health Stroke Scale Score within 6 hours after onset are accurate predictors of outcome after cerebral ischemia: development and external validation of prognostic models. Stroke 35, 158–162 (2004)

    Article  Google Scholar 

  41. Saver, J.L., Altman, H.: Relationship between neurologic deficit severity and final functional outcome shifts and strengthens during first hours after onset. Stroke 43, 1537–1541 (2012)

    Article  Google Scholar 

  42. Di Carlo, A., Lamassa, M., Baldereschi, M., et al.: Risk factors and outcome of subtypes of ischemic stroke. Data from a multicenter multinational hospital-based registry. The European Community Stroke Project. J. Neurol. Sci. 244, 143–150 (2006)

    Article  Google Scholar 

  43. Desilles, J.P., Meseguer, E., Labreuche, J., et al.: Diabetes mellitus, admission glucose, and outcomes after stroke thrombolysis: a registry and systematic review. Stroke 44, 1915–1923 (2013)

    Article  Google Scholar 

  44. Manabe, Y., Kono, S., Tanaka, T., et al.: High blood pressure in acute ischemic stroke and clinical outcome. Neurol. Int. 1(1), e1 (2009). https://doi.org/10.4081/ni.2009.e1

    Article  Google Scholar 

  45. Baek, J.H., Kim, K., Lee, Y.B., et al.: Predicting stroke outcome using clinical- versus imaging-based scoring system. J. Stroke Cerebrovasc. Dis. 24(3), 642–648 (2015). https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.10.009

    Article  Google Scholar 

  46. Bivard, A., Spratt, N., Miteff, F., et al.: Tissue is more important than time in stroke patients being assessed for thrombolysis. Front. Neurol. 9, 41 (2018)

    Article  Google Scholar 

  47. Tian, H., Parsons, M.W., Levi, C.R., et al.: Influence of occlusion site and baseline ischemic core on outcome in patients with ischemic stroke. Neurology 92, e2626–e2643 (2019). https://doi.org/10.1212/WNL.0000000000007553

    Article  Google Scholar 

  48. Ajčević, M., Furlanis, G., Buoite Stella, A., et al.: CTP based model predicts outcome in rTPA treated wake-up stroke patients. Physiol. Meas. (2020). https://doi.org/10.1088/1361-6579/ab9c70

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by Master in Clinical Engineering, University of Trieste. A. Miladinović is supported by the European Social Fund (ESF) and Autonomous Region of Friuli Venezia Giulia (FVG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Cuzzocrea .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no conflict of interest do declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ajčević, M. et al. (2020). A Big-Data Variational Bayesian Framework for Supporting the Prediction of Functional Outcomes in Wake-Up Stroke Patients. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58799-4_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58798-7

  • Online ISBN: 978-3-030-58799-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics