Skip to main content

Theory, Analyses and Predictions of Multifractal Formalism and Multifractal Modelling for Stroke Subtypes’ Classification

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12250))

Included in the following conference series:

  • 1314 Accesses

Abstract

Fractal and multifractal analysis interplay within complementary methodology is of pivotal importance in ubiquitously natural and man-made systems. Since the brain as a complex system operates on multitude of scales, the characterization of its dynamics through detection of self-similarity and regularity presents certain challenges. One framework to dig into complex dynamics and structure is to use intricate properties of multifractals. Morphological and functional points of view guide the analysis of the central nervous system (CNS). The former focuses on the fractal and self-similar geometry at various levels of analysis ranging from one single cell to complicated networks of cells. The latter point of view is defined by a hierarchical organization where self-similar elements are embedded within one another. Stroke is a CNS disorder that occurs via a complex network of vessels and arteries. Considering this profound complexity, the principal aim of this study is to develop a complementary methodology to enable the detection of subtle details concerning stroke which may easily be overlooked during the regular treatment procedures. In the proposed method of our study, multifractal regularization method has been employed for singularity analysis to extract the hidden patterns in stroke dataset with two different approaches. As the first approach, decision tree, Naïve bayes, kNN and MLP algorithms were applied to the stroke dataset. The second approach is made up of two stages: i) multifractal regularization (kulback normalization) method was applied to the stroke dataset and mFr_stroke dataset was generated. ii) the four algorithms stated above were applied to the mFr_stroke dataset. When we compared the experimental results obtained from the stroke dataset and mFr_stroke dataset based on accuracy (specificity, sensitivity, precision, F1-score and Matthews Correlation Coefficient), it was revealed that mFr_stroke dataset achieved higher accuracy rates. Our novel proposed approach can serve for the understanding and taking under control the transient features of stroke. Notably, the study has revealed the reliability, applicability and high accuracy via the methods proposed. Thus, the integrated method has revealed the significance of fractal patterns and accurate prediction of diseases in diagnostic and other critical-decision making processes in related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roca, J.L., Rodrıguez-Bermudez, G., Fernandez-Martinez, M.: Fractal-based techniques for physiological time series: an updated approach. Open Phys. 16(1), 741–750 (2018)

    Article  Google Scholar 

  2. Di Ieva, A.: The Fractal Geometry of the Brain, vol. 585. Springer, New York (2016)

    Book  Google Scholar 

  3. Li, Z., Liu, Z., Khan, M.A.: Fractional investigation of bank data with fractal-fractional Caputo derivative. Chaos, Solitons Fractals 131, 109528 (2020)

    Article  MathSciNet  Google Scholar 

  4. Karaca, Y., Zhang, Y.D., Muhammad, K.: Characterizing complexity and self-similarity based on fractal and entropy analyses for stock market forecast modelling. Expert Syst. Appl. 144, 113098 (2020)

    Article  Google Scholar 

  5. Karaca, Y., Cattani, C.: A comparison of two hölder regularity functions to forecast stock indices by ANN algorithms. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11620, pp. 270–284. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24296-1_23

    Chapter  Google Scholar 

  6. Dimri, V.P., Ganguli, S.S.: Fractal theory and its implication for acquisition, processing and interpretation (API) of geophysical investigation: a review. J. Geol. Soc. India 93(2), 142–152 (2019)

    Article  Google Scholar 

  7. Nottale, L.: Scale relativity and fractal space-time: theory and applications. Found. Sci. 15(2), 101–152 (2010)

    Article  MathSciNet  Google Scholar 

  8. Petrica, V., Maricel, A.: On the transport phenomena in composite materials using the fractal space-time theory. Adv. Compos. Mater. Med. Nanotechnol. 477, 477–494 (2011)

    Google Scholar 

  9. Meltzer, M.I.: The potential use of fractals in epidemiology. Prev. Vet. Med. 11(3–4), 255–260 (1991)

    Article  Google Scholar 

  10. Levy-Vehel, J.: Fractal approaches in signal processing. Fractals 3(04), 755–775 (1995)

    Article  MathSciNet  Google Scholar 

  11. Albertovich, T.D., Aleksandrovna, R.I.: The fractal analysis of the images and signals in medical diagnostics. Fract. Anal. Appl. Health Sci. Soc. Sci. 26, 57 (2017)

    Google Scholar 

  12. Karaca, Y., Cattani, C.: Clustering multiple sclerosis subgroups with multifractal methods and self-organizing map algorithm. Fractals 25(04), 1740001 (2017)

    Article  Google Scholar 

  13. Karaca, Y., Moonis, M., Baleanu, D.: Fractal and multifractional-based predictive optimization model for stroke subtypes’ classification. Chaos, Solitons Fractals 136, 109820 (2020)

    Article  MathSciNet  Google Scholar 

  14. Karaca, Y., Cattani, C., Moonis, M., Bayrak, Ş.: Stroke subtype clustering by multifractal Bayesian denoising with fuzzy \(C\) means and \(K\)-means algorithms. Complexity 2018, 15 pages (2018). Article ID 9034647

    Article  Google Scholar 

  15. Karaca, Y., Moonis, M., Zhang, Y.D., Gezgez, C.: Mobile cloud computing based stroke healthcare system. Int. J. Inf. Manag. 45, 250–261 (2019)

    Article  Google Scholar 

  16. Norrving, B.: Oxford Textbook of Stroke and Cerebrovascular Disease. Oxford University Press, Oxford (2014)

    Book  Google Scholar 

  17. He, L., Wang, J., Zhang, L., Zhang, X., Dong, W., Yang, H.: Decreased fractal dimension of heart rate variability is associated with early neurological deterioration and recurrent ischemic stroke after acute ischemic stroke. J. Neurol. Sci. 396, 42–47 (2019)

    Article  Google Scholar 

  18. Smitha, B.: Fractal and multifractal analysis of atherosclerotic plaque in ultrasound images of the carotid artery. Chaos, Solitons Fractals 123, 91–100 (2019)

    Article  MathSciNet  Google Scholar 

  19. Lemmens, S., Devulder, A., Van Keer, K., Bierkens, J., De Boever, P., Stalmans, I.: Systematic review on fractal dimension of the retinal vasculature in neurodegeneration and stroke: assessment of a potential biomarker. Front. Neurosci. 14, 16 (2020)

    Article  Google Scholar 

  20. Appaji, A., et al.: Retinal vascular fractal dimension in bipolar disorder and schizophrenia. J. Affect. Disord. 259, 98–103 (2019)

    Article  Google Scholar 

  21. Amezquita-Sanchez, J.P., Mammone, N., Morabito, F.C., Marino, S., Adeli, H.: A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J. Neurosci. Methods 322, 88–95 (2019)

    Article  Google Scholar 

  22. Zhao, P., Zhuo, R., Li, S., Lin, H., Shu, C.M., Laiwang, B., Suo, L.: Fractal characteristics of gas migration channels at different mining heights. Fuel 271, 117479 (2020)

    Article  Google Scholar 

  23. Zuo, X., Tang, X., Zhou, Y.: Influence of sampling length on estimated fractal dimension of surface profile. Chaos, Solitons Fractals 135, 109755 (2020)

    Article  MathSciNet  Google Scholar 

  24. Razminia, K., Razminia, A., Shiryaev, V.I.: Application of fractal geometry to describe reservoirs with complex structures. Commun. Nonlinear Sci. Numer. Simul. 82, 105068 (2020)

    Article  MathSciNet  Google Scholar 

  25. Andres, J., Langer, J., Matlach, V.: Fractal-based analysis of sign language. Commun. Nonlinear Sci. Numer. Simul. 84, 105214 (2020)

    Article  MathSciNet  Google Scholar 

  26. Raghavendra, U., Acharya, U.R., Adeli, H.: Artificial intelligence techniques for automated diagnosis of neurological disorders. Eur. Neurol. 82, 41–64 (2019)

    Article  Google Scholar 

  27. Cheon, S., Kim, J., Lim, J.: The use of deep learning to predict stroke patient mortality. Int. J. Environ. Res. Public Health 16(11), 1876 (2019)

    Article  Google Scholar 

  28. Ge, Y., et al.: Predicting post-stroke pneumonia using deep neural network approaches. Int. J. Med. Inf. 132, 103986 (2019)

    Article  Google Scholar 

  29. Lin, C.H., et al.: Evaluation of machine learning methods to stroke outcome prediction using a nationwide disease registry. Comput. Methods Programs Biomed. 190, 105381 (2020)

    Article  Google Scholar 

  30. Arai, K., Bhatia, R., Kapoor, S. (eds.): CompCom 2019. AISC, vol. 997. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22871-2

    Book  Google Scholar 

  31. The MathWorks. MATLAB (R2019b) The mathWorks, inc., Natick, MA (2019)

    Google Scholar 

  32. Vehel, L., FracLab (2019) project.inria.fr/fraclab/

  33. Harte, D.: Multifractals. Chapman and Hall, London (2001)

    Book  Google Scholar 

  34. Lopes, R., Betrouni, N.: Fractal and multifractal analysis: a review. Med. Image Anal. 13(4), 634–649 (2009)

    Article  Google Scholar 

  35. Moreno, P.A., et al.: The human genome: a multifractal analysis. BMC Genom. 12, 506 (2011)

    Article  Google Scholar 

  36. Barnsley, M.F.S., Saupe, D., Vrscay, E.R.: Signal enhancement based on hölder regularity analysis. IMA Vol. Math. Appl. 132, 197–209 (2002)

    Google Scholar 

  37. Ben Slimane, M., Ben Omrane, I., Ben Abid, M., Halouani, B., Alshormani, F.: Directional multifractal analysis in the \(L^{p}\) setting. J. Funct. Spaces 2019, 12 pages (2019). Article ID 1691903

    MATH  Google Scholar 

  38. Levy Vehel, J.: Signal enhancement based on Hölder regularity analysis. Inria technical report (1999)

    Google Scholar 

  39. Heurteaux, Y., Jaffard, S.: Multifractal analysis of images: new connexions between analysis and geometry. In: Byrnes, J. (ed.) Imaging for Detection and Identification, pp. 169–194. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5620-8_9

    Chapter  Google Scholar 

  40. Jaffard, S.: Pointwise regularity criteria. C.R. Math. 339(11), 757–762 (2004)

    Article  MathSciNet  Google Scholar 

  41. Jaffard, S. and Melot, C.: Wavelet analysis of fractal boundaries. Part 1: local exponents. Commun. Math. Phys. 258(3), 513–539 (2005)

    Google Scholar 

  42. Ben Slimane, M. and Mélot, C.: Analysis of a fractal boundary: the graph of the knopp function. Abstract Appl. Anal. 2015 14 (2015). Article number 587347

    Google Scholar 

  43. Shao, J., Buldyrev, S.V., Cohen, R., Kitsak, M., Havlin, S., Stanley, H.E.: Fractal boundaries of complex networks. EPL (Europhys. Lett.) 84(4), 48004 (2008)

    Google Scholar 

  44. Lutton, E., Grenier, P., Vehel, J.L.: An interactive EA for multifractal Bayesian denoising. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 274–283. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32003-6_28

    Chapter  Google Scholar 

  45. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1994)

    Article  MathSciNet  Google Scholar 

  46. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  MathSciNet  Google Scholar 

  47. Chen, Y.P., Chen, Y., Tong, L.: Sar Image Denoising Based on Multifractal and Regularity Analysis. In Key Engineering Materials. Trans Tech Publications Ltd. 500, 534–539 (2012)

    Google Scholar 

  48. Karaca, Y., Cattani, C.: Computational methods for data analysis. Walter de Gruyter GmbH, Berlin (2018)

    MATH  Google Scholar 

  49. Zhang, Y., Sun, Y., Phillips, P., Liu, G., Zhou, X., Wang, S.: A multilayer perceptron based smart pathological brain detection system by fractional Fourier entropy. J. Med. Syst. 40(7), 173 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeliz Karaca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karaca, Y., Baleanu, D., Moonis, M., Zhang, YD. (2020). Theory, Analyses and Predictions of Multifractal Formalism and Multifractal Modelling for Stroke Subtypes’ Classification. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58802-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58801-4

  • Online ISBN: 978-3-030-58802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics