Skip to main content

Coupling an Agent-Based Model with a Mathematical Model of Rift Valley Fever for Studying the Impact of Animal Migrations on the Rift Valley Fever Transmission

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Rift valley fever (RVF) is a disease killing principally animals. In this article, we coupled a mathematical model of animal-mosquito interactions with an agent-based model describing the migrations of hosts between cities. The mathematical model describes animal-mosquito interactions in each city and the agent based-model describes the migrations of animals between cities. The coupled model allows to compute at each time the number of infected animals in all cities and to study the impact of host migrations on the dynamics of infections. The obtained results showed that quarantining certain cities can reduce the number of infected hosts. It is also observed that when the density of animal migrations increases, the number of infection cases increases. The developed model brings solutions to both models (mathematical model and agent-based model) limits. This model could help to study and forecasting the Rift Valley Fever transmission and its outbreak in the short and long term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murgue, B., Zeller, H., Deubel, V.: The ecology and epidemiology of West Nile virus in Africa, Europe and Asia. In: Mackenzie, J.S., Barrett, A.D.T., Deubel, V. (eds.) Japanese Encephalitis and West Nile Viruses. Current Topics in Microbiology and Immunology, vol. 267, pp. 195–221. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-642-59403-8_10

    Chapter  Google Scholar 

  2. Zeller, H.G., Schuffenecker, I.: West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur. J. Clin. Microbiol. Infect. Dis. 23(3), 147–156 (2004)

    Article  Google Scholar 

  3. Iggidr, A., Sallet, G., Souza, M.O.: Analysis of the dynamics of a class of models for vector-borne diseases with host circulation. Research Report RR-8396, INRIA, p. 20 (2013)

    Google Scholar 

  4. Adams, B., Kapan, D.D.: Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics. PLoS ONE 4(8), e6763 (2009)

    Article  Google Scholar 

  5. Alvim, M., Iggidr, A., Koiler, J., Sallet, G., Penna, M.L.F., Souza, M.O.: Onset of a vector borne disease due to human circulation-uniform, local and network reproduction ratios. Preprint HAL (2013)

    Google Scholar 

  6. Gaff, H.D., Hartley, D.M., Leahy, N.P.: Electron. J. Differ. Equ. 2007(115), 1–12 (2007). ISSN 1072-669

    Google Scholar 

  7. Gao, D., Cosner, C., Cantrell, R.S., Beier, J.C., Ruan, S.: Modeling the spatial spread of rift valley fever in Egypt. Bull. Math. Biol. 75(3), 523–542 (2013)

    Article  MathSciNet  Google Scholar 

  8. Mpeshe, S.C., Haario, H., Tchuenche, J.M.: A mathematical model of Rift Valley fever with human host. Acta. Biotheor. 59, 231–250 (2011)

    Article  Google Scholar 

  9. Xue, L., Scott, H.M., Cohnstaedt, L.W., Scoglio, C.: A network-based meta-population approach to model Rift Valley fever epidemics. J. Theor. Biol. 306, 129–144 (2012)

    Article  MathSciNet  Google Scholar 

  10. Xue, L., Cohnstaedt, L.W., Scott, H.M., Scoglio, C.: A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America. PLoS ONE 8(5), e62049 (2013). https://doi.org/10.1371/journal.pone.0062049

    Article  Google Scholar 

  11. Niu, T., Gaff, H.D., Papelis, Y.E., Hartley, D.M.: An epidemiological model of rift valley fever with spatial dynamics. Comput. Math. Methods Med. 2012(2012), Article ID 138757, 12 p. (2012)

    Google Scholar 

  12. Roche, B., Guégan, J.-F., Bousquet, F.: Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission. BMC Bioinform. 9, 435 (2008)

    Google Scholar 

  13. Paul, P.N.T., Bah, A., Ndiaye, P.I., Ndione, J.A.: An agent-based model for studying the impact of herd mobility on the spread of vector-borne diseases: the case of rift valley fever (Ferlo Senegal). Open J. Model. Simul. 2, 97–111 (2014). https://doi.org/10.4236/ojmsi.2014.23012

    Article  Google Scholar 

  14. Sukumar, S.R., Nutaro, J.J.: Agent-based vs. equation-based epidemiological models: a model selection case study, pp. 74–79. IEEE, December 2012

    Google Scholar 

  15. Paul, P.N.T., Bah, A., Ndiaye, P.I., Dione, J.A.: Coupling of an agent-based model with a mathematical model of water pond dynamics for studying the impact of animal herd mobility on the Aedes vexans mosquito populations. J. Mosquitoes Res. 4(3), 132–141 (2017)

    Google Scholar 

  16. Paul, P.N.T., Bah, A., Ndiaye, P.I., Ndione, J.A.: An agent based model to study the impact of intra-annual season’s variability on the dynamics of Aedes Vexans and Culex Poicilipes mosquito populations in North Senegal (Ferlo). In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds.) CoMeSySo 2017. AISC, vol. 662, pp. 381–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67621-0_35

    Chapter  Google Scholar 

  17. van den Driessche, P., Watmough, J.: Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  18. Common-pool Resources and Multi-Agent Simulations. http://cormas.cirad.fr

  19. Pratt, H.D., Moore, C.G.: Vector-Borne Disease Control: Mosquitoes, of Public Health Importance and their Control. U.S. Department of Health and Human Services, Atlanta, GA (1993)

    Google Scholar 

  20. Bates, M.: The Natural History of Mosquitoes. Peter Smith, Gloucester (1970)

    Google Scholar 

  21. Moore, C.G., et al.: Guidelines for Arbovirus Surveillance Programs in the United Sates. Center for Disease Control and Prevention, April 1993

    Google Scholar 

  22. Radostits, O.M.: Herd Healthy: Food Animal Production Medicine, 3rd edn. W. B. Saunders Company, Philidelphia (2001)

    Google Scholar 

  23. Turell, M.J., Kay, B.H.: Susceptibility of slected strains of Australian mosquitoes (Diptera: Culicidae) to Rift Valley fever virus. J. Med. Entomol. 35(2), 132–135 (1998)

    Article  Google Scholar 

  24. Peters, C.J., Linthicum, K.J.: Rift Valley fever. In: Beran, G.W. (ed.) Handbook of Zoonoses, B: Viral, 2nd edn, pp. 125–138. CRC Press (1994)

    Google Scholar 

  25. Freier, J.E., Rosen, L.: Verticle transmission of dengue virus by the mosquitoes of the Aedes scutellaris group. Am. J. Trop. Med. Hyg. 37(3), 640–647 (1987)

    Article  Google Scholar 

  26. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  27. Heffernan, J.M., Smith, R.J., Wahl, L.M.: Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2, 281–293 (2005). EJDE-2007/115 AN EPIDEMIOLOGICAL MODEL 11

    Article  Google Scholar 

  28. Lipsitch, M., Nowak, M.A., Ebert, D., May, R.M.: The population dynamics of vertically and horizontally transmitted parasites. Proc. R. Soc. B 260, 321–327 (1995)

    Article  Google Scholar 

  29. Diekmann, O., Heesterbeek, J.A., Metz, J.A.: On the denotion and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28(4), 365–382 (1990). https://doi.org/10.1007/BF00178324. ISSN 0303-6812

    Article  MathSciNet  MATH  Google Scholar 

  30. Barker, C., Niu, T., Reisen, W., Hartley, D.M.: Data-driven modeling to assess receptivity for rift valley fever virus. PLoS Neglected Trop. Dis. 7(11), e2515 (2013). https://doi.org/10.1371/journal.pntd.0002515

    Article  Google Scholar 

  31. https://www.collinsdictionary.com/dictionary/english/livestock

  32. Canyon, D.V., Hii, J.L.K., Muller, R.: The frequency of host biting and its effect on oviposition and survival in Aedes aegypti (Diptera: Culicidae). Bull. Entomol. Res. 89(1), 35–39 (1999)

    Article  Google Scholar 

  33. Hayes, R.O., Tempelis, C.H., Hess, A.D., Reeves, W.C.: Mosquito host preference studies in Hale County, Texas. Am. J. Trop. Med. Hyg. 22(2), 270–277 (1973)

    Article  Google Scholar 

  34. Jones, C.J., Lloyd, J.E.: Mosquitoes feeding on sheep in southeastern Wyoming. J. Am. Mosquito Control Assoc. 1(4), 530–532 (1985)

    Google Scholar 

  35. Magnarelli, L.A.: Host feeding patterns of Connecticut mosquitoes (Diptera: Culicidae). Am. J. Trop. Med. Hyg. 26(3), 547–552 (1977)

    Article  Google Scholar 

  36. Pratt, H.D., Moore, C.G.: Vector-Borne Disease Controls: Mosquitoes, of Public Health Importance and Their Control, U.S. Department of Health and Human Services, Atlanta, Ga, USA (1993)

    Google Scholar 

  37. Turell, M.J., Bailey, C.L., Beaman, J.R.: Vector competence of a Houston, Texas strain of Aedes albopictus for Rift Valley fever virus. J. Am. Mosquito Control Assoc. 4(1), 94–96 (1988)

    Google Scholar 

  38. Turell, M.J., Faran, M.E., Cornet, M., Bailey, C.L.: Vector competence of senegalese Aedes fowleri (Diptera: Culicidae) for Rift Valley fever virus. J. Med. Entomol. 25(4), 262–266 (1988)

    Article  Google Scholar 

  39. Wen, B., Teng, Z., Liu, W.: Threshold dynamics in a periodic three-patch rift valley fever virus transmission model. Complexity 2019, Article ID 7896946, 18 p. (2019). https://doi.org/10.1155/2019/7896946

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Python Ndekou Tandong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Python Ndekou Tandong, P., Ndiaye, P.I., Bah, A., Dione, D., Ndione, J.A. (2020). Coupling an Agent-Based Model with a Mathematical Model of Rift Valley Fever for Studying the Impact of Animal Migrations on the Rift Valley Fever Transmission. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58802-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58801-4

  • Online ISBN: 978-3-030-58802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics