Skip to main content

Theoretical and Computational Analysis at a Quantum State Level of Autoionization Processes in Astrochemistry

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Changes in atomic-molecular alignment and/or in molecular orientation, can affect strongly the fate of basic collision events. However, a deep knowledge of these phenomena is still today not fully understood, although it is of general relevance for the control of the stereo-dynamics of elementary chemical-physical processes, occurring under a variety of conditions, both in gas phase and at surface. In particular, understanding the mode-specificity in reaction dynamics of open-shell atoms, free radicals, molecules, atomic and molecular ions, under hyper-thermal, thermal and sub-thermal conditions is of fundamental importance for catalysis, plasmas, photo-dynamics as well as interstellar and low-temperature chemistry. In this paper recent results on the role of atomic alignment effects on the stereo-dynamics of autoionization reactions are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartocci, A., Belpassi, L., Cappelletti, D., Falcinelli, S., et al.: Catching the role of anisotropic electronic distribution and charge transfer in halogen bonded complexes of noble gases. J. Chem. Phys. 142(18), 184304 (2015)

    Google Scholar 

  2. Cappelletti, D., Bartocci, A., Grandinetti, F., Falcinelli, S., et al.: Chem. Eur. J. 21(16), 6234–6240 (2015)

    Google Scholar 

  3. Pirani, F., Cappelletti, D., Falcinelli, S., Cesario, D., Nunzi, F., Belpassi, L., Tarantelli, F.: Angew. Chem. Int. Ed. 58(13), 4195–4199 (2019)

    Google Scholar 

  4. Siska, P.E.: Rev. Mod. Phys. 65, 337–412 (1993)

    Google Scholar 

  5. Falcinelli, S., Pirani, F., Candori, P., Brunetti, B.G., Farrar, J.M., Vecchiocattivi, F.: Front. Chem. 7, 445 (2019)

    Google Scholar 

  6. Benz, A., Morgner, H.: Mol. Phys. 57, 319–336 (1986)

    Google Scholar 

  7. Falcinelli, S., Bartocci, A., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Chem. Eur. J. 22(2), 764–771 (2016)

    Google Scholar 

  8. Falcinelli, S., et al.: Modeling the intermolecular interactions and characterization of the dynamics of collisional autoionization processes. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 69–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_6

    Chapter  Google Scholar 

  9. Falcinelli, S., Rosi, M., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Chem. Eur. J. 22(35), 12518–12526 (2016)

    Google Scholar 

  10. Arango, C.A., Shapiro, M., Brumer, P.: Phys. Rev. Lett. 97, 193202 (2006)

    Google Scholar 

  11. Falcinelli, S., Capriccioli, A., Pirani, F., Vecchiocattivi, F., Stranges, S., Martì, C., et al.: Fuel 209, 802–811 (2017)

    Google Scholar 

  12. Falcinelli, S.: Catal. Today 348, 95–101 (2020)

    Google Scholar 

  13. Cavallotti, C., Leonori, F., Balucani, N., Nevrly, V., Bergeat, A., et al.: J. Phys. Chem. Lett. 5, 4213–4218 (2014)

    Google Scholar 

  14. Leonori, F., Balucani, N., Nevrly, V., Bergeat, A., et al.: J. Phys. Chem. C 119(26), 14632–14652 (2015)

    Google Scholar 

  15. Leonori, F., Petrucci, R., Balucani, N., Casavecchia, P., Rosi, M., et al.: Phys. Chem. Chem. Phys. 11(23), 4701–4706 (2009)

    Google Scholar 

  16. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Leonori, F., Skouteris, D.: theoretical study of reactions relevant for atmospheric models of titan: interaction of excited nitrogen atoms with small hydrocarbons. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 331–344. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_26

    Chapter  Google Scholar 

  17. Alagia, M., Candori, P., Falcinelli, S., Lavollée, M., Pirani, F., Richter, R., Stranges, S., Vecchiocattivi, F.: Chem. Phys. Lett. 432, 398–402 (2006)

    Google Scholar 

  18. Alagia, M., Candori, P., Falcinelli, S., Lavollée, M., Pirani, F., Richter, R., Stranges, S., Vecchiocattivi, F.: J. Phys. Chem. A 113, 14755–14759 (2009)

    Google Scholar 

  19. Alagia, M., Candori, P., Falcinelli, S., Lavollèe, M., Pirani, F., Richter, R., Stranges, S., Vecchiocattivi, F.: Phys. Chem. Chem. Phys. 12, 5389–5395 (2010)

    Google Scholar 

  20. Falcinelli, S., Pirani, F., Alagia, M., Schio, L., Richter, R., et al.: Chem. Phys. Lett. 666, 1–6 (2016)

    Google Scholar 

  21. Falcinelli, S., Pirani, F., Vecchiocattivi, F.: Atmosphere 6(3), 299–317 (2015)

    Google Scholar 

  22. Biondini, F., Brunetti, B.G., Candori, P., De Angelis, F., et al.: J. Chem. Phys. 122(16), 164307 (2005)

    Google Scholar 

  23. Biondini, F., Brunetti, B.G., Candori, P., De Angelis, F., et al.: J. Chem. Phys. 122(16), 164308 (2005)

    Google Scholar 

  24. Podio, L., Codella, C., Lefloch, B., Balucani, N., Ceccarelli, C., et al.: MNRAS 470(1), L16–L20 (2017)

    Google Scholar 

  25. Bartolomei, M., Cappelletti, D., De Petris, G., Rosi, M., et al.: Phys. Chem. Chem. Phys. 10(39), 5993–6001 (2008)

    Google Scholar 

  26. Leonori, F., Petrucci, R., Balucani, N., Casavecchia, P., Rosi, et al.: J. Phys. Chem. A 113(16), 4330–4339 (2009)

    Google Scholar 

  27. De Petris, G., Cartoni, A., Rosi, M., Barone, V., Puzzarini, C., Troiani, A.: Chem. Phys. Chem. 12(1), 112–115 (2011)

    Google Scholar 

  28. Falcinelli, S., Fernandez-Alonso, F., Kalogerakis, K., Zare, R.N.: Mol. Phys. 88(3), 663–672 (1996)

    Google Scholar 

  29. Alagia, M., Balucani, N., Candori, P., Falcinelli, S., Richter, et al.: Rend. Lincei Sci. Fisiche e Naturali 24, 53–65 (2013)

    Google Scholar 

  30. Ben Arfa, M., Lescop, B., Cherid, M., Brunetti, B., Candori, P., et al.: Chem. Phys. Lett. 308, 71–77 (1999)

    Google Scholar 

  31. Brunetti, B.G., Candori, P., Ferramosche, R., Falcinelli, S., et al.: Chem. Phys. Lett. 294, 584–592 (1998)

    Google Scholar 

  32. Hotop, H., Illenberger, E., Morgner, H., Niehaus, A.: Chem. Phys. Lett. 10(5), 493–497 (1971)

    Google Scholar 

  33. Brunetti, B.G., Candori, P., Cappelletti, D., Falcinelli, S., et al.: Chem. Phys. Lett. 539–540, 19–23 (2012)

    Google Scholar 

  34. Falcinelli, S., Rosi, M., Candori, P., Farrar, J.M., Vecchiocattivi, F., et al.: Planet. Space Sci. 99, 149–157 (2014)

    Google Scholar 

  35. Pei, L., Carrascosa, E., Yang, N., Falcinelli, S., Farrar, J.M.: J. Phys. Chem. Lett. 6(9), 1684–1689 (2015)

    Google Scholar 

  36. Alagia, M., Candori, P., Falcinelli, S., Pirani, F., et al.: Phys. Chem. Chem. Phys. 13(18), 8245–8250 (2011)

    Google Scholar 

  37. Alagia, M., Candori, P., Falcinelli, S., Lavollée, M., et al.: J. Chem. Phys. 126(20), 201101 (2007)

    Google Scholar 

  38. Balucani, N., Bartocci, A., Brunetti, B., Candori, P., et al.: Chem. Phys. Lett. 546, 34–39 (2012)

    Google Scholar 

  39. Falcinelli, S., Vecchiocattivi, F., Pirani, F.: Phys. Rev. Lett. 121(16), 163403 (2018)

    Google Scholar 

  40. Falcinelli, S., Vecchiocattivi, F., Pirani, F.: J. Chem. Phys. 150(4), 044305 (2019)

    Google Scholar 

  41. Bethe, H.A.: Phys. Rev. 57, 1125–1144 (1940)

    Google Scholar 

  42. Miller, W.H., Morgner, H.: J. Chem. Phys. 67, 4923–4930 (1977)

    Google Scholar 

  43. Brunetti, B., Candori, P., Falcinelli, S., Pirani, F., Vecchiocattivi, F.: J. Chem. Phys. 139(16), 164305 (2013)

    Google Scholar 

  44. Falcinelli, S., Candori, P., Pirani, F., Vecchiocattivi, F.: Phys. Chem. Chem. Phys. 19(10), 6933–6944 (2017)

    Google Scholar 

  45. Falcinelli, S., Rosi, M., Vecchiocattivi, F., Pirani, F.: Analytical potential energy formulation for a new theoretical approach in penning ionization. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11621, pp. 291–305. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24302-9_21

    Chapter  Google Scholar 

  46. Brunetti, B., Candori, P., Falcinelli, S., Lescop, B., et al.: Eur. Phys. J. D 38(1), 21–27 (2006)

    Google Scholar 

  47. Brunetti, B., Candori, P., De Andres, J., Pirani, F., Rosi, M., et al.: J. Phys. Chem. A 101(41), 7505–7512 (1997)

    Google Scholar 

  48. Alagia, M., Boustimi, M., Brunetti, B.G., Candori, P., et al.: J. Chem. Phys. 117(3), 1098–1102 (2002)

    Google Scholar 

  49. Alagia, M., Candori, P., Falcinelli, S., Mundim, M.S.P., Pirani, F., et al.: J. Chem. Phys. 135(14), 144304 (2011)

    Google Scholar 

  50. Alagia, M., Bodo, E., Decleva, P., Falcinelli, S., et al.: Phys. Chem. Chem. Phys. 15(4), 1310–1318 (2013)

    Google Scholar 

  51. Pirani, F., Maciel, G.S., Cappelletti, D., Aquilanti, V.: Int. Rev. Phys. Chem. 25, 165–199 (2006)

    Google Scholar 

  52. Candori, P., Falcinelli, S., Pirani, F., Tarantelli, F., Vecchiocattivi, F.: Chem. Phys. Lett. 436, 322–326 (2007)

    Google Scholar 

  53. Falcinelli, S., Vecchiocattivi, F., Pirani, F.: Commun. Chem. 3(1), 64 (2020)

    Google Scholar 

  54. Gordon, S.D.S., Omiste, J.J., Zou, J., Tanteri, S., Brumer, P., Osterwalder, A.: Nat. Chem. 10, 1190–1195 (2018)

    Google Scholar 

  55. Gordon, S.D.S., Zou, J., Tanteri, S., Jankunas, J., Osterwalder, A.: Phys. Rev. Lett. 119, 053001 (2017)

    Google Scholar 

  56. Gregor, R.W., Siska, P.E.: J. Chem. Phys. 74, 1078–1092 (1981)

    Google Scholar 

  57. Skouteris, D., Balucani, N., Faginas-Lago, N., et al.: A&A 584, A76 (2015)

    Google Scholar 

  58. Skouteris, D., Balucani, N., Ceccarelli, C., Faginas Lago, N., et al.: MNRAS 482, 3567–3575 (2019)

    Google Scholar 

  59. Jankunas, J., Bertsche, B., Jachymski, K., Hapka, M., Osterwalder, A.: J. Chem. Phys. 140, 244302 (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported and financed with the “Fondo Ricerca di Base, 2018, dell’Università degli Studi di Perugia” (Project Titled: Indagini teoriche e sperimentali sulla reattività di sistemi di interesse astrochimico). Support from Italian MIUR and University of Perugia (Italy) is acknowledged within the program “Dipartimenti di Eccellenza 2018–2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Falcinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falcinelli, S., Pirani, F., Rosi, M., Vecchiocattivi, F. (2020). Theoretical and Computational Analysis at a Quantum State Level of Autoionization Processes in Astrochemistry. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12251. Springer, Cham. https://doi.org/10.1007/978-3-030-58808-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58808-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58807-6

  • Online ISBN: 978-3-030-58808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics