Abstract
The present work focuses on the characterization of the reaction between cyanoacetylene and cyano radical by electronic structure calculations of the stationary points along the minimum energy path. One channel, leading to C\(_{4}\)N\(_{2}\) (2-Butynedinitrile) + H, was selected due to the importance of its products. Using different ab initio methods, a number of stationary points of the potential energy surface were characterized. The energy values of these minima were compared in order to weight the computational costs in relation to chemical accuracy. The results of this works suggests that B2PLYP (and B2PLYPD3) gave a better description of the saddle point geometry, while B3LYP works better for minima.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wyrowski, F., Schilke, P., Walmsley, C.: Vibrationally excited HC\(_{3}\)N toward hot cores. Astron. Astrophys. 341, 882–895 (1999)
Taniguchi, K., Saito, M., Sridharan, T., Minamidani, T.: Survey observations to study chemical evolution from high-mass starless cores to high-mass protostellar objects I: HC\(_{3}\)N and HC\(_{5}\)N. Astrophys. J. 854(2), 133 (2018)
Mendoza, E., et al.: A search for cyanopolyynes in L1157–B1. Monthly Not. R. Astron. Soc. 475(4), 5501–5512 (2018)
Takano, S., et al.: Observations of \(^{13}\)C isotopomers of HC\(_{3}\)N and HC\(_{5}\)N in TMC-1: evidence for isotopic fractionation. Astron. Astrophys. 329, 1156–1169 (1998)
Turner, B.E.: Detection of interstellar cyanoacetylene. Astrophys. J. 163, L35–L39 (1971)
Broten, N.W., Oka, T., Avery, L.W., MacLeod, J.M., Kroto, H.W.: The detection of HC\(_{9}\)N in interstellar space. 223, L105–L107 ( 1978). https://doi.org/10.1086/182739
Bell, M., Feldman, P., Travers, M., McCarthy, M., Gottlieb, C., Thaddeus, P.: Detection of HC\(_{11}\)N in the cold dust cloud TMC-1. Astrophys. J. Lett. 483(1), L61–L64 (1997)
Loomis, R.A., et al.: Non-detection of HC\(_{11}\)N towards TMC-1: constraining the chemistry of large carbon-chain molecules. Monthly Not. R. Astron. Soc. 463(4), 4175–4183 (2016)
Cordiner, M.A., Charnley, S.B., Kisiel, Z., McGuire, B.A., Kuan, Y.J.: Deep K-band observations of TMC-1 with the green bank telescope: detection of HC\(_{7}\)O, nondetection of HC\(_{11}\)N, and a search for new organic molecules. Astrophys. J. 850(2), 187 (2017). https://doi.org/10.3847/1538-4357/aa970c
Jaber Al-Edhari, A., et al.: History of the solar-type protostar IRAS 16293–2422 as told by the cyanopolyynes. A&A 597, A40 (2017). https://doi.org/10.1051/0004-6361/201629506
Cheikh Sid, S., Morales, S.B., Guillemin, J.C., Klippenstein, S.J., Sims, I.R.: Low temperature rate coefficients for the reaction CN + HC\(_{3}\)N. J. Phys. Chem. A 117(46), 12155–12164 (2013). https://doi.org/10.1021/jp406842q
Petrie, S., Millar, T., Markwick, A.: NCCN in TMC-1 and IRC+ 10216. Monthly Not. R. Astron. Soc. 341(2), 609–616 (2003)
Agúndez, M., et al.: Probing non-polar interstellar molecules through their protonated form: detection of protonated cyanogen (NCCNH\(^+\)). Astron. Astrophys. 579, L10 (2015)
Petrie, S., Osamura, Y.: NCCN and NCCCCN formation in Titan’s atmosphere: 2. HNC as a viable precursor. J. Phys. Chem. A 108(16), 3623–3631 (2004)
Podio, L., et al.: Silicon-bearing molecules in the shock L1157–B1: first detection of SiS around a Sun-like protostar. Monthly Not. R. Astron. Soc. Lett. 470(1), L16–L20 (2017)
Skouteris, D., et al.: Interstellar dimethyl ether gas-phase formation: a quantum chemistry and kinetics study. Monthly Not. R. Astron. Soc. 482(3), 3567–3575 (2019)
Skouteris, D., Balucani, N., Faginas-Lago, N., Falcinelli, S., Rosi, M.: Dimerization of methanimine and its charged species in the atmosphere of Titan and interstellar/cometary ice analogs. Astron. Astrophys. 584, A76 (2015)
Balucani, N., Skouteris, D., Ceccarelli, C., Codella, C., Falcinelli, S., Rosi, M.: A theoretical investigation of the reaction between the amidogen, NH, and the ethyl, C\(_{2}\)H\(_{5}\), radicals: a possible gas-phase formation route of interstellar and planetary ethanimine. Mol. Astrophys. 13, 30–37 (2018)
Sleiman, C., El Dib, G., Rosi, M., Skouteris, D., Balucani, N., Canosa, A.: Low temperature kinetics and theoretical studies of the reaction CN + CH\(_{3}\)NH\(_{2}\): a potential source of cyanamide and methyl cyanamide in the interstellar medium. Phys. Chem. Chem. Phys. 20(8), 5478–5489 (2018)
Falcinelli, S., Rosi, M., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Stereoselectivity in autoionization reactions of hydrogenated molecules by metastable noble gas atoms: the role of electronic couplings. Chem. A Eur. J. 22(35), 12518–12526 (2016)
Leonori, F., et al.: Crossed-beam and theoretical studies of the S(\(^{1}\)D) + C\(_{2}\)H\(_{2}\) reaction. J. Phys. Chem. A 113(16), 4330–4339 (2009)
Bartolomei, M., et al.: The intermolecular potential in NO-N\(_{2}\) and (NO-N\(_{2}\))\(^{+}\) systems: implications for the neutralization of ionic molecular aggregates. Phys. Chem. Chem. Phys. 10(39), 5993–6001 (2008)
de Petris, G., Cartoni, A., Rosi, M., Barone, V., Puzzarini, C., Troiani, A.: The proton affinity and gas-phase basicity of sulfur dioxide. ChemPhysChem 12(1), 112–115 (2011)
Leonori, F., et al.: Observation of organosulfur products (thiovinoxy, thioketene and thioformyl) in crossed-beam experiments and low temperature rate coefficients for the reaction S(\(^{1}\)D) + C\(_{2}\)H\(_{4}\). Phys. Chem. Chem. Phys. 11(23), 4701–4706 (2009)
de Petris, G., Rosi, M., Troiani, A.: SSOH and HSSO radicals: an experimental and theoretical study of [S\(_{2}\)OH]\(^{0/+/-}\) species. J. Phys. Chem. A 111(28), 6526–6533 (2007)
Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Leonori, F., Skouteris, D.: Theoretical study of reactions relevant for atmospheric models of Titan: interaction of excited nitrogen atoms with small hydrocarbons. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 331–344. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_26
Roothaan, C.C.J.: New developments in molecular orbital theory. Rev. Mod. Phys. 23(2), 69 (1951)
Pople, J.A., Nesbet, R.K.: Self-consistent orbitals for radicals. J. Chem. Phys. 22(3), 571–572 (1954)
Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652 (1993). https://doi.org/10.1063/1.464913
Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: \({Ab \,Initio}\) calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)
Grimme, S.: Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124(3), 034108 (2006)
Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011)
Goerigk, L., Grimme, S.: Efficient and accurate double-hybrid-meta-GGA density functionals- evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 7(2), 291–309 (2011)
Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989)
Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90(4), 2154–2161 (1989)
Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94(14), 5523–5527 (1990)
Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Ann. Rev. Phys. Chem. 32(1), 359–401 (1981)
Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157(6), 479–483 (1989)
Olsen, J., Jørgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104(20), 8007–8015 (1996)
Frisch, M., et al.: Gaussian 09, Revision A. 02, 2009. Gaussian. Inc., Wallingford CT (2009)
Huang, L.C.L., Balucani, N., Lee, Y.T., Kaiser, R.I., Osamura, Y.: Crossed beam reaction of the cyano radical, CN (X \(^2\Sigma ^+\)), with methylacetylene, CH\(_{3}\)CCH (X \(^1A_{1}\)): observation of cyanopropyne, CH\(_{3}\)CCCN (X \(^1A_{1}\)), and cyanoallene, H\(_{2}\)CCCHCN (X \(^1A^{^{\prime }}\)). J. Chem. Phys. 111(7), 2857–2860 (1999)
Balucani, N., et al.: Crossed beam reaction of cyano radicals with hydrocarbon molecules. II. Chemical dynamics of 1-cyano-1-methylallene (CNCH\(_{3}\)CCCH\(_{2}\); X \(^1A^{^{\prime }}\)) formation from reaction of CN (X \(^2\Sigma ^+\)) with dimethylacetylene CH\(_{3}\)CCCH\(_{3}\) (X \(^1A^{^{\prime }}_{1}\)). J. Chem. Phys. 111(16), 7472–7479 (1999)
Huang, L.C.L., et al.: Crossed beam reaction of cyano radicals with hydrocarbon molecules. IV. Chemical dynamics of cyanoacetylene (HCCCN; X \(^1\Sigma ^+\)) formation from reaction of CN (X \(^2\Sigma ^+\)) with acetylene, C\(_{2}\)H\(_{2}\) (X \(^1\Sigma ^{+}_{g}\)). J. Chem. Phys. 113(19), 8656–8666 (2000)
Balucani, N.: Elementary reactions of N atoms with hydrocarbons: first steps towards the formation of prebiotic N-containing molecules in planetary atmospheres. Chem. Soc. Rev. 41(16), 5473–5483 (2012)
Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 811312 for the project “Astro-Chemical Origins” (ACO). E.V.F.A. thanks the Dipartimento di Ingegneria Civile ed Ambientale of University of Perugia for allocated computing time. N.F.L. thanks Perugia University for financial support through the AMIS project (“Dipartimenti di Eccellenza-2018–2022”), also thanks the Dipartimento di Chimica, Biologia e Biotecnologie for funding under the program Fondo Ricerca di Base 2017. M.R. acknowledges the project “Indagini teoriche e sperimentali sulla reattività di sistemi di interesse astrochimico” funded with Fondo Ricerca di Base 2018 of the University of Perugia.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Valença Ferreira de Aragão, E., Faginas-Lago, N., Rosi, M., Mancini, L., Balucani, N., Skouteris, D. (2020). A Computational Study of the Reaction Cyanoacetylene and Cyano Radical Leading to 2-Butynedinitrile and Hydrogen Radical. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12251. Springer, Cham. https://doi.org/10.1007/978-3-030-58808-3_51
Download citation
DOI: https://doi.org/10.1007/978-3-030-58808-3_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58807-6
Online ISBN: 978-3-030-58808-3
eBook Packages: Computer ScienceComputer Science (R0)