Skip to main content

A Theoretical Investigation of the Reactions of N(2D) with Small Alkynes and Implications for the Prebiotic Chemistry of Titan

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

The reactions between atomic nitrogen, in its first electronically excited state (2D), and two different hydrocarbons, methyl acetylene and acetylene, have been analyzed by performing electronic structure calculations of the potential energy surface. For each reaction, H-displacement channels leading to cyclic molecular products have been identified, together with an H2 elimination channel for the reaction N(2D) + acetylene and a methyl (CH3) loss channel for the N(2D) + methylacetylene reaction. Since both reactions have been found to be exothermic and without an entrance barrier, we suggest that they are fast and efficient under the conditions of the upper atmosphere of Titan. These data will be used to perform kinetic calculations and will be compared with detailed experimental results in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dutuit, O., et al.: Critical review of N, N+, N2+, N++ and N2++ main production processes and reactions of relevance to Titan’s atmosphere. Astrophys. J. Suppl. Ser. 204, 20 (2013)

    Article  Google Scholar 

  2. Vuitton, V., Dutuit, O., Smith, M.A., Balucani, N.: Chemistry of Titan’s atmosphere. In: Mueller-Wodarg, I., Griffith, C., Lellouch, E., Cravens, T. (eds.) Titan: Surface, Atmosphere and Magnetosphere. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  3. Balucani, N.: Nitrogen fixation by photochemistry in the atmosphere of titan and implications for prebiotic chemistry. In: Trigo-Rodriguez, J., Raulin, F., Muller, C., Nixon, C. (eds.) The Early Evolution of the Atmospheres of Terrestrial Planets. Astrophysics and Space Science Proceedings, vol. 35, pp. 155–164. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5191-4_12

    Chapter  Google Scholar 

  4. Balucani, N.: Elementary reactions of N atoms with hydrocarbons: first steps towards the formation of prebiotic N-containing molecules in planetary atmospheres. Chem. Soc. Rev. 41, 5473–5483 (2012)

    Article  Google Scholar 

  5. Balucani, N.: Elementary reactions and their role in gas-phase prebiotic chemistry. Int. J. Mol. Sci. 10, 2304–2335 (2009)

    Article  Google Scholar 

  6. Lindal, G.F., Wood, G.E., Hotz, H.B., Sweetnam, D.N. Eshleman, V.R., Tyler, G.L.: The atmosphere of Titan. An analysis of the Voyager 1 radio occultation measurements. Icarus 2(53), 348–363 (1983)

    Google Scholar 

  7. Hanel, R., et al.: Infrared Observations of the Saturnian System from Voyager 1. Science 212(4491), 192–200 (1981)

    Article  Google Scholar 

  8. Maguire, W.C., Hanel, R.A., Jennings, D.E., Kunde, V.G., Samuelson, R.E.: C3H8 and C3H4 in Titan’s atmosphere. Nature 292(5825), 683–686 (1981)

    Article  Google Scholar 

  9. Lombardo, N.A., et al.: Detection of propadiene on Titan. Astrophys. J. Lett. 881, L33 (2019). (6 pp)

    Google Scholar 

  10. Imanaka, H., Smith, M.A.: Formation of nitrogenated organic aerosols in the Titan upper atmosphere. PNAS 107, 12423–12428 (2010)

    Article  Google Scholar 

  11. Somogyi, A., Oh, C.H., Smith, M.A., Lunine, J.I.: Organic environments on Saturn’s moon, Titan: simulating chemical reactions and analyzing products by FT-ICR and ion-trap mass spectrometry. J. Am. Soc. Mass Spectrom. 16(6), 850–859 (2005)

    Article  Google Scholar 

  12. Cassidy, T., et al.: Radiolysis and photolysis of icy satellite surface: experiments and theory. Space Sci. Rev. 153, 299–315 (2010)

    Article  Google Scholar 

  13. Yung, K.L., Allen, M., Pinto, J.P.: Photochemistry of the atmosphere of Titan: comparison between models and observations. Astrophys. J. Suppl. Ser. 55, 465–506 (1984)

    Article  Google Scholar 

  14. Lavvas, P., Coustenis, A., Vardavas, I.: Coupling photochemistry with haze formation in Titan’s atmosphere, Part I: model description. Planet. Space Sci. 56, 27 (2008)

    Article  Google Scholar 

  15. Lavvas, P., Coustenis, A., Vardavas, I.: Coupling photochemistry with haze formation in Titan’s atmosphere, Part II: results and validation with Cassini/Huygens data. Planet. Space Sci. 56, 67 (2008)

    Article  Google Scholar 

  16. Hébrard, E., Dobrijevic, M., Bénilan, Y., Raulin, F.: Photochemical kinetics uncertainties in modeling Titan’s atmosphere: first consequences. Planet. Space Sci. 55, 1470–1489 (2007)

    Article  Google Scholar 

  17. Balucani, N., Bergeat, A., Cartechini, L., Volpi, G.G., Casavecchia, P., Skouteris, D., Rosi, M.: Combined crossed molecular beam and theoretical studies of the N(2D) + CH4 reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 113, 11138–11152 (2009)

    Article  Google Scholar 

  18. Balucani, N., et al.: Cyanomethylene formation from the reaction of excited nitrogen atoms with acetylene: a crossed beam and ab initio study. J. Am. Chem. Soc. 122, 4443–4450 (2000)

    Article  Google Scholar 

  19. Balucani, N., Leonori, F., Petrucci, R., Stazi, M., Skouteris, D., Rosi, M., Casavecchia, P.: Formation of nitriles and imines in the atmosphere of Titan: combined crossed-beam and theoretical studies on the reaction dynamics of excited nitrogen atoms N(2D) with ethane. Faraday Discuss. 147, 189–216 (2010)

    Article  Google Scholar 

  20. Balucani, N., et al.: Combined crossed beam and theoretical studies of the N(2D) + C2H4 reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 116, 10467–10479 (2012)

    Article  Google Scholar 

  21. Balucani, N., Cartechini, L., Alagia, M., Casavecchia, P., Volpi, G.G.: Observation of nitrogen-bearing organic molecules from reactions of nitrogen atoms with hydrocarbons: a crossed beam study of N(2D) + ethylene. J. Phys. Chem. A 104, 5655–5659 (2000)

    Article  Google Scholar 

  22. Balucani, N., et al.: Dynamics of the N(2D) + D2 reaction from crossed-beam and quasiclassical trajectory studies. J. Phys. Chem. A 105, 2414–2422 (2001)

    Article  Google Scholar 

  23. Balucani, N., et al.: Experimental and theoretical differential cross sections for the N(2D)+H2 reaction. J. Phys. Chem. A 110, 817–829 (2006)

    Article  Google Scholar 

  24. Homayoon, Z., Bowman, J.M., Balucani, N., Casavecchia, P.: Quasiclassical trajectory calculations of the N(2D) + H2O reaction elucidating the formation mechanism of HNO and HON seen in molecular beam experiments. J. Phys. Chem. Lett. 5, 3508–3513 (2014)

    Article  Google Scholar 

  25. Balucani, N., Cartechini, L., Casavecchia, P., Homayoon, Z., Bowman, J.M.: A combined crossed molecular beam and quasiclassical trajectory study of the Titan-relevant N(2D) + D2O reaction. Mol. Phys. 113, 2296–2301 (2015)

    Article  Google Scholar 

  26. Balucani, N., Pacifici, L., Skouteris, D., Caracciolo, A., Casavecchia, P., Rosi, M.: A theoretical investigation of the reaction N(2D) + C6H6 and implications for the upper atmosphere of Titan. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10961, pp. 763–772. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95165-2_53

    Chapter  Google Scholar 

  27. Takayanagi, T., et al.: Measurements of thermal rate constants and theoretical calculations for the N(2D, 2P) + C2H2 and C2D2 reactions. J. Phys. Chem. A 102, 6251–6258 (1998)

    Article  Google Scholar 

  28. Nuñez-Reyes, D., Loison, J.-C., Hickson, K.M., Dobrijevic, M.: Rate constants for the N(2D) + C2H2 reaction over the 50–296 k temperature range. Phys. Chem. Chem. Phys. 21, 22230–22237 (2019)

    Article  Google Scholar 

  29. Falcinelli, S., Rosi, M., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Stereoselectivity in autoionization reactions of hydrogenated molecules by metastable gas atoms: the role of electronic couplings. Chem. Eur. J. 22, 12518–12526 (2016)

    Article  Google Scholar 

  30. Leonori, F., et al.: Crossed-beam and theoretical studies of the S(1D) + C2H2 reaction. J. Phys. Chem. A 113, 4330–4339 (2009)

    Article  Google Scholar 

  31. Bartolomei, M., Cappelletti, D., De Petris, G., Moix Teixidor, M., Pirani, F., Rosi, M., Vecchiocattivi, F.: The intermolecular potential in NO-N2 and (NO-N2)+ systems: implications for the neutralization of ionic molecular aggregates. Phys. Chem. Chem. Phys. 10, 5993–6001 (2008)

    Article  Google Scholar 

  32. De Petris, G., Cartoni, A., Rosi, M., Barone, V., Puzzarini, C., Troiani, A.: The proton affinity and gas-phase basicity of sulfur dioxide. ChemPhysChem 12, 112–115 (2011)

    Article  Google Scholar 

  33. Leonori, F., et al.: Observation of organosulfur products (thiovinoxy, thioketene and thioformyl) in crossed-beam experiments and low temperature rate coefficients for the reaction S(1D) + C2H4. Phys. Chem. Chem. Phys. 11, 4701–4706 (2009)

    Article  Google Scholar 

  34. De Petris, G., Rosi, M., Troiani, A.: SSOH and HSSO radicals: an experimental and theoretical study of [S2OH]0/+/- species. J. Phys. Chem. A 111, 6526–6533 (2007)

    Article  Google Scholar 

  35. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Leonori, F., Skouteris, D.: Theoretical study of reactions relevant for atmospheric models of titan: interaction of excited nitrogen atoms with small hydrocarbons. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 331–344. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_26

    Chapter  Google Scholar 

  36. Becke, A.D.: A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372–1377 (1998)

    Article  Google Scholar 

  37. Stephens, P.J., Devlin, F.J., Chablowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)

    Article  Google Scholar 

  38. Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Google Scholar 

  39. Woon, D.E., Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98, 1358–1371 (1993)

    Google Scholar 

  40. Kendall, R.A., Dunning Jr., T.H., Harrison, J.R.: Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992)

    Article  Google Scholar 

  41. Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989)

    Article  Google Scholar 

  42. Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990)

    Article  Google Scholar 

  43. Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem. 32, 359–401 (1981)

    Article  Google Scholar 

  44. Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: Quadratic configuration interaction. A general technique for determining electron correlation energies. Chem. Phys. Lett. 157, 479–483 (1989)

    Google Scholar 

  45. Olsen, J., Jorgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration–interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104, 8007–8015 (1996)

    Article  Google Scholar 

  46. Schofield, K.: Critically evaluated rate constants for gaseous reactions of several electronically excited species. J. Phys. Chem. Ref. Data 8, 723–798 (1979)

    Article  Google Scholar 

  47. Frisch, M.J., et al.: Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT (2009)

    Google Scholar 

  48. Schaftenaar, G., Noordik, J.H.: Molden: a pre- and post-processing program for molecular and electronic structures. J. Comput. Aided Mol. Des. 14, 123–134 (2000)

    Article  Google Scholar 

  49. Schaftenaar, G., Vlieg, E., Vriend, G.: Molden 2.0: quantum chemistry meets proteins. J. Comput. Aided Mol. Des. 31(9), 789–800 (2017). https://doi.org/10.1007/s10822-017-0042-5

    Article  Google Scholar 

  50. Leonori, F., Balucani, N., Capozza, G., Segoloni, E., Volpi, G.G., Casavecchia, P.: Dynamics of the O(3P) + C2H2 reaction from crossed molecular beam experiments with soft electron ionization detection. Phys. Chem. Chem. Physiscs 16, 10008–10022 (2014)

    Article  Google Scholar 

  51. Gimondi, I., Cavallotti, C., Vanuzzo, G., Balucani, N., Casavecchia, P.: Reaction dynamics of O(3P) + Propyne: II. Primary products, branching ratios, and role of intersystem crossing from ab initio coupled triplet/singlet potential energy surfaces and statistical calculations. J. Physycal Chem. A 120(27), 4619–4633 (2016)

    Google Scholar 

  52. Kaiser, R.I., Balucani, N.: Exploring the gas phase synthesis of the elusive class of boronyls and the mechanism of boronyl radical reactions under single collision conditions. Acc. Chem. Res. 50, 1154–1162 (2017)

    Article  Google Scholar 

  53. Huang, L.C.L., et al.: Crossed beam reaction of the cyano radical with hydrocarbons molecule. IV. Chemical dynamics of cyanoacetylene (HCCCN; X1Σ+) formation from reaction of CN(X2Σ+) with acetylene, C2H2 (X1Σ +g ). J. Chem. Phys. 113, 8656 (2000)

    Google Scholar 

  54. Balucani, N., Asvany, O., Kaiser, R.I., Osamura, Y.: Formation of three C4H3N isomers from the reaction of CN (X2Σ+) with Allene, H2CCCH2 (X1A1), and methylacetylene, CH3CCH (X1A1): a combined crossed beam and ab initio study. J. Phys. Chem. A 106, 4301–4311 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Italian Space Agency (ASI, DC-VUM-2017-034, Grant no 2019-3 U.O Life in Space).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mancini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mancini, L., de Aragão, E.V.F., Rosi, M., Skouteris, D., Balucani, N. (2020). A Theoretical Investigation of the Reactions of N(2D) with Small Alkynes and Implications for the Prebiotic Chemistry of Titan. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12251. Springer, Cham. https://doi.org/10.1007/978-3-030-58808-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58808-3_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58807-6

  • Online ISBN: 978-3-030-58808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics