Abstract
The reactions between atomic nitrogen, in its first electronically excited state (2D), and two different hydrocarbons, methyl acetylene and acetylene, have been analyzed by performing electronic structure calculations of the potential energy surface. For each reaction, H-displacement channels leading to cyclic molecular products have been identified, together with an H2 elimination channel for the reaction N(2D) + acetylene and a methyl (CH3) loss channel for the N(2D) + methylacetylene reaction. Since both reactions have been found to be exothermic and without an entrance barrier, we suggest that they are fast and efficient under the conditions of the upper atmosphere of Titan. These data will be used to perform kinetic calculations and will be compared with detailed experimental results in future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dutuit, O., et al.: Critical review of N, N+, N2+, N++ and N2++ main production processes and reactions of relevance to Titan’s atmosphere. Astrophys. J. Suppl. Ser. 204, 20 (2013)
Vuitton, V., Dutuit, O., Smith, M.A., Balucani, N.: Chemistry of Titan’s atmosphere. In: Mueller-Wodarg, I., Griffith, C., Lellouch, E., Cravens, T. (eds.) Titan: Surface, Atmosphere and Magnetosphere. Cambridge University Press, Cambridge (2013)
Balucani, N.: Nitrogen fixation by photochemistry in the atmosphere of titan and implications for prebiotic chemistry. In: Trigo-Rodriguez, J., Raulin, F., Muller, C., Nixon, C. (eds.) The Early Evolution of the Atmospheres of Terrestrial Planets. Astrophysics and Space Science Proceedings, vol. 35, pp. 155–164. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5191-4_12
Balucani, N.: Elementary reactions of N atoms with hydrocarbons: first steps towards the formation of prebiotic N-containing molecules in planetary atmospheres. Chem. Soc. Rev. 41, 5473–5483 (2012)
Balucani, N.: Elementary reactions and their role in gas-phase prebiotic chemistry. Int. J. Mol. Sci. 10, 2304–2335 (2009)
Lindal, G.F., Wood, G.E., Hotz, H.B., Sweetnam, D.N. Eshleman, V.R., Tyler, G.L.: The atmosphere of Titan. An analysis of the Voyager 1 radio occultation measurements. Icarus 2(53), 348–363 (1983)
Hanel, R., et al.: Infrared Observations of the Saturnian System from Voyager 1. Science 212(4491), 192–200 (1981)
Maguire, W.C., Hanel, R.A., Jennings, D.E., Kunde, V.G., Samuelson, R.E.: C3H8 and C3H4 in Titan’s atmosphere. Nature 292(5825), 683–686 (1981)
Lombardo, N.A., et al.: Detection of propadiene on Titan. Astrophys. J. Lett. 881, L33 (2019). (6 pp)
Imanaka, H., Smith, M.A.: Formation of nitrogenated organic aerosols in the Titan upper atmosphere. PNAS 107, 12423–12428 (2010)
Somogyi, A., Oh, C.H., Smith, M.A., Lunine, J.I.: Organic environments on Saturn’s moon, Titan: simulating chemical reactions and analyzing products by FT-ICR and ion-trap mass spectrometry. J. Am. Soc. Mass Spectrom. 16(6), 850–859 (2005)
Cassidy, T., et al.: Radiolysis and photolysis of icy satellite surface: experiments and theory. Space Sci. Rev. 153, 299–315 (2010)
Yung, K.L., Allen, M., Pinto, J.P.: Photochemistry of the atmosphere of Titan: comparison between models and observations. Astrophys. J. Suppl. Ser. 55, 465–506 (1984)
Lavvas, P., Coustenis, A., Vardavas, I.: Coupling photochemistry with haze formation in Titan’s atmosphere, Part I: model description. Planet. Space Sci. 56, 27 (2008)
Lavvas, P., Coustenis, A., Vardavas, I.: Coupling photochemistry with haze formation in Titan’s atmosphere, Part II: results and validation with Cassini/Huygens data. Planet. Space Sci. 56, 67 (2008)
Hébrard, E., Dobrijevic, M., Bénilan, Y., Raulin, F.: Photochemical kinetics uncertainties in modeling Titan’s atmosphere: first consequences. Planet. Space Sci. 55, 1470–1489 (2007)
Balucani, N., Bergeat, A., Cartechini, L., Volpi, G.G., Casavecchia, P., Skouteris, D., Rosi, M.: Combined crossed molecular beam and theoretical studies of the N(2D) + CH4 reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 113, 11138–11152 (2009)
Balucani, N., et al.: Cyanomethylene formation from the reaction of excited nitrogen atoms with acetylene: a crossed beam and ab initio study. J. Am. Chem. Soc. 122, 4443–4450 (2000)
Balucani, N., Leonori, F., Petrucci, R., Stazi, M., Skouteris, D., Rosi, M., Casavecchia, P.: Formation of nitriles and imines in the atmosphere of Titan: combined crossed-beam and theoretical studies on the reaction dynamics of excited nitrogen atoms N(2D) with ethane. Faraday Discuss. 147, 189–216 (2010)
Balucani, N., et al.: Combined crossed beam and theoretical studies of the N(2D) + C2H4 reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 116, 10467–10479 (2012)
Balucani, N., Cartechini, L., Alagia, M., Casavecchia, P., Volpi, G.G.: Observation of nitrogen-bearing organic molecules from reactions of nitrogen atoms with hydrocarbons: a crossed beam study of N(2D) + ethylene. J. Phys. Chem. A 104, 5655–5659 (2000)
Balucani, N., et al.: Dynamics of the N(2D) + D2 reaction from crossed-beam and quasiclassical trajectory studies. J. Phys. Chem. A 105, 2414–2422 (2001)
Balucani, N., et al.: Experimental and theoretical differential cross sections for the N(2D)+H2 reaction. J. Phys. Chem. A 110, 817–829 (2006)
Homayoon, Z., Bowman, J.M., Balucani, N., Casavecchia, P.: Quasiclassical trajectory calculations of the N(2D) + H2O reaction elucidating the formation mechanism of HNO and HON seen in molecular beam experiments. J. Phys. Chem. Lett. 5, 3508–3513 (2014)
Balucani, N., Cartechini, L., Casavecchia, P., Homayoon, Z., Bowman, J.M.: A combined crossed molecular beam and quasiclassical trajectory study of the Titan-relevant N(2D) + D2O reaction. Mol. Phys. 113, 2296–2301 (2015)
Balucani, N., Pacifici, L., Skouteris, D., Caracciolo, A., Casavecchia, P., Rosi, M.: A theoretical investigation of the reaction N(2D) + C6H6 and implications for the upper atmosphere of Titan. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10961, pp. 763–772. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95165-2_53
Takayanagi, T., et al.: Measurements of thermal rate constants and theoretical calculations for the N(2D, 2P) + C2H2 and C2D2 reactions. J. Phys. Chem. A 102, 6251–6258 (1998)
Nuñez-Reyes, D., Loison, J.-C., Hickson, K.M., Dobrijevic, M.: Rate constants for the N(2D) + C2H2 reaction over the 50–296 k temperature range. Phys. Chem. Chem. Phys. 21, 22230–22237 (2019)
Falcinelli, S., Rosi, M., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Stereoselectivity in autoionization reactions of hydrogenated molecules by metastable gas atoms: the role of electronic couplings. Chem. Eur. J. 22, 12518–12526 (2016)
Leonori, F., et al.: Crossed-beam and theoretical studies of the S(1D) + C2H2 reaction. J. Phys. Chem. A 113, 4330–4339 (2009)
Bartolomei, M., Cappelletti, D., De Petris, G., Moix Teixidor, M., Pirani, F., Rosi, M., Vecchiocattivi, F.: The intermolecular potential in NO-N2 and (NO-N2)+ systems: implications for the neutralization of ionic molecular aggregates. Phys. Chem. Chem. Phys. 10, 5993–6001 (2008)
De Petris, G., Cartoni, A., Rosi, M., Barone, V., Puzzarini, C., Troiani, A.: The proton affinity and gas-phase basicity of sulfur dioxide. ChemPhysChem 12, 112–115 (2011)
Leonori, F., et al.: Observation of organosulfur products (thiovinoxy, thioketene and thioformyl) in crossed-beam experiments and low temperature rate coefficients for the reaction S(1D) + C2H4. Phys. Chem. Chem. Phys. 11, 4701–4706 (2009)
De Petris, G., Rosi, M., Troiani, A.: SSOH and HSSO radicals: an experimental and theoretical study of [S2OH]0/+/- species. J. Phys. Chem. A 111, 6526–6533 (2007)
Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Leonori, F., Skouteris, D.: Theoretical study of reactions relevant for atmospheric models of titan: interaction of excited nitrogen atoms with small hydrocarbons. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 331–344. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_26
Becke, A.D.: A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372–1377 (1998)
Stephens, P.J., Devlin, F.J., Chablowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)
Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)
Woon, D.E., Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98, 1358–1371 (1993)
Kendall, R.A., Dunning Jr., T.H., Harrison, J.R.: Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992)
Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989)
Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990)
Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem. 32, 359–401 (1981)
Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: Quadratic configuration interaction. A general technique for determining electron correlation energies. Chem. Phys. Lett. 157, 479–483 (1989)
Olsen, J., Jorgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration–interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104, 8007–8015 (1996)
Schofield, K.: Critically evaluated rate constants for gaseous reactions of several electronically excited species. J. Phys. Chem. Ref. Data 8, 723–798 (1979)
Frisch, M.J., et al.: Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT (2009)
Schaftenaar, G., Noordik, J.H.: Molden: a pre- and post-processing program for molecular and electronic structures. J. Comput. Aided Mol. Des. 14, 123–134 (2000)
Schaftenaar, G., Vlieg, E., Vriend, G.: Molden 2.0: quantum chemistry meets proteins. J. Comput. Aided Mol. Des. 31(9), 789–800 (2017). https://doi.org/10.1007/s10822-017-0042-5
Leonori, F., Balucani, N., Capozza, G., Segoloni, E., Volpi, G.G., Casavecchia, P.: Dynamics of the O(3P) + C2H2 reaction from crossed molecular beam experiments with soft electron ionization detection. Phys. Chem. Chem. Physiscs 16, 10008–10022 (2014)
Gimondi, I., Cavallotti, C., Vanuzzo, G., Balucani, N., Casavecchia, P.: Reaction dynamics of O(3P) + Propyne: II. Primary products, branching ratios, and role of intersystem crossing from ab initio coupled triplet/singlet potential energy surfaces and statistical calculations. J. Physycal Chem. A 120(27), 4619–4633 (2016)
Kaiser, R.I., Balucani, N.: Exploring the gas phase synthesis of the elusive class of boronyls and the mechanism of boronyl radical reactions under single collision conditions. Acc. Chem. Res. 50, 1154–1162 (2017)
Huang, L.C.L., et al.: Crossed beam reaction of the cyano radical with hydrocarbons molecule. IV. Chemical dynamics of cyanoacetylene (HCCCN; X1Σ+) formation from reaction of CN(X2Σ+) with acetylene, C2H2 (X1Σ +g ). J. Chem. Phys. 113, 8656 (2000)
Balucani, N., Asvany, O., Kaiser, R.I., Osamura, Y.: Formation of three C4H3N isomers from the reaction of CN (X2Σ+) with Allene, H2CCCH2 (X1A1), and methylacetylene, CH3CCH (X1A1): a combined crossed beam and ab initio study. J. Phys. Chem. A 106, 4301–4311 (2002)
Acknowledgments
This research was supported by the Italian Space Agency (ASI, DC-VUM-2017-034, Grant no 2019-3 U.O Life in Space).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Mancini, L., de Aragão, E.V.F., Rosi, M., Skouteris, D., Balucani, N. (2020). A Theoretical Investigation of the Reactions of N(2D) with Small Alkynes and Implications for the Prebiotic Chemistry of Titan. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12251. Springer, Cham. https://doi.org/10.1007/978-3-030-58808-3_52
Download citation
DOI: https://doi.org/10.1007/978-3-030-58808-3_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58807-6
Online ISBN: 978-3-030-58808-3
eBook Packages: Computer ScienceComputer Science (R0)