Skip to main content

A Theoretical Investigation of the Reaction Between Glycolaldehyde and H+ and Implications for the Organic Chemistry of Star Forming Regions

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12251))

Included in the following conference series:

  • 1413 Accesses

Abstract

The characterization of one of the possible pathways in the reaction between H+ and glycolaldehyde (the channel leading to COH + CH3OH+) has been carried out by performing electronic structure calculations of the stationary points along the minimum energy path. We have employed different theoretical methods verifying that, while geometry optimizations can be performed with a relatively low level of theory, quantitative results for the energies require higher level calculations. The same methodology will be applied to the complete scheme of the title reaction as well as similar processes which are needed to characterize the destruction routes of interstellar complex organic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caselli, P., Ceccarelli, C.: Our astrochemical heritage. Astron. Astrophys. Rev. 20, 56 (2012)

    Google Scholar 

  2. McGuire, B.A.: 2018 Census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules. Astrophys. J. Suppl. Ser. 239, 2 (2018)

    Google Scholar 

  3. Ceccarelli, C., et al.: Seeds Of Life In Space (SOLIS): The Organic Composition Diversity at 300–1000 au Scale in Solar-type Star-forming Regions. ApJ, 850 (2017)

    Google Scholar 

  4. Herbst, E., van Dishoeck, E.F.: Complex organic interstellar molecules. Annu. Rev. Astron. Astrophys. 47(1), 427–480 (2009)

    Google Scholar 

  5. Balucani, N.: Elementary reactions and their role in gas-phase prebiotic chemistry. Int. J. Mol. Sci. 10, 2304–2335 (2009)

    Google Scholar 

  6. Balucani, N.: Elementary reactions of N atoms with hydrocarbons: first steps towards the formation of prebiotic N-containing molecules in planetary atmospheres. Chem. Soc. Rev. 41, 5473–5483 (2012)

    Google Scholar 

  7. Ehrenfreund, P., Charnley, S.B.: Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early earth. Ann. Rev. Astron. Astrophys. 38, 427–483 (2000)

    Google Scholar 

  8. Hollis, J.M., Lovas, F.J., Jewell, P.R. Interstellar Glycolaldehyde: The First Sugar. ApJ, 540, 2, L107–L110 (2000)

    Google Scholar 

  9. Lefloch, B., et al.: L1157-B1, a factory of complex organic molecules in a solar-type star-forming region. MNRAS 469, L73 (2017)

    Google Scholar 

  10. Jørgensen, J.K., et al.: The ALMA Protostellar Interferometric Line Survey (PILS). First results from an unbiased submillimeter wavelength line survey of the Class 0 protostellar binary IRAS 16293–2422 with ALMA. Astron. Astrophys. 595, A117 (2016)

    Google Scholar 

  11. Bouchez, A., et al.: The submillimeter spectrum of deuterated glycolaldehydes. Astron. Astrophys. 540, A51 (2012)

    Google Scholar 

  12. Xue, C., Remijan, A.J., Burkhardt, A.M., Herbst, E.: ALMA observations of the spatial distribution of three C2H4O2 isomers toward Sgr B2(N). ApJ 871, 1 (2019)

    Google Scholar 

  13. Skouteris, D., et al.: The genealogical tree of ethanol: gas-phase formation of glycolaldehyde, acetic acid, and formic acid. ApJ 854, 2 (2018)

    Google Scholar 

  14. Coutens, A., et al.: Chemical modelling of glycolaldehyde and ethylene glycol in star-forming regions. MNRAS 475(2), 2016–2026 (2018)

    Google Scholar 

  15. Chuang, K.-J., Fedoseev, G., Ioppolo, S., van Dishoeck, E.F., Linnartz, H.: H-atom addition and abstraction reactions in mixed CO, H2CO and CH3OH ices - an extended view on complex organic molecule formation. MNRAS 455(2), 1702–1712 (2016)

    Google Scholar 

  16. Garrod, R.T., Widicus, S.L.V., Herbst, E.: Complex chemistry in star-forming regions: an expanded gas-grain warm-up chemical model. ApJ 682(1), 283–302 (2008)

    Google Scholar 

  17. Holdship, J., Rawlings, J., Viti, S., Balucani, N., Skouteris, D., Williams, D.: Investigating the efficiency of explosion chemistry as a source of complex organic molecules in TMC-1. ApJ 878, 65 (2019)

    Google Scholar 

  18. Ascenzi, D., et al.: Destruction of dimethyl ether and methyl formate by collisions with He+. Astron. Astrophys. 625, A72 (2019)

    Google Scholar 

  19. Becke, A.D.: A new mixing of Hartree-Fock and local density functional theories. J. Chem. Phys. 98(2), 1372–1377 (1998)

    Google Scholar 

  20. Stephens, P.J., Devlin, F.J., Chablowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)

    Google Scholar 

  21. Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Google Scholar 

  22. Woon, D.E., Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98, 1358–1371 (1993)

    Google Scholar 

  23. Kendall, R.A., Dunning Jr., T.H., Harrison, J.R.: Electron affinities of the first row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992)

    Google Scholar 

  24. Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989)

    Google Scholar 

  25. Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990)

    Google Scholar 

  26. Goerigk, L., Grimme, S.: Efficient and accurate double-hybrid-meta-GGA density functionals- evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics and noncovalent interactions. J. Chem. Theory Comput. 7, 291–309 (2011)

    Google Scholar 

  27. Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011)

    Google Scholar 

  28. Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Ann. Rev. Phys. Chem. 32, 359–401 (1981)

    Google Scholar 

  29. Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: Quadratic configuration interaction. A general technique for determining electron correlation energies. Chem. Phys. Lett. 157, 479–483 (1989)

    Google Scholar 

  30. Olsen, J., Jorgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration–interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104, 8007–8015 (1996)

    Google Scholar 

  31. Vazart, F., Calderini, D., Puzzarini, C., Skouteris, D., Barone, V.: State-of-the-art thermochemical and kinetic computations for astrochemical complex organic molecules: formamide formation in cold interstellar clouds as a case study. J. Chem. Theory Comput. 12, 5385–5397 (2016)

    Google Scholar 

  32. Falcinelli, S., Rosi, M., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Stereoselectivity in autoionization reactions of hydrogenated molecules by metastable noble gas atoms: the role of electronic couplings. Chem. Eur. Jour. 22(35), 12518–12526 (2016)

    Google Scholar 

  33. Leonori, F., et al.: Crossed-beam and theoretical studies of the S(1D) + C2H2 reaction. J. Phys. Chem. A 113(16), 4330–4339 (2009)

    Google Scholar 

  34. Bartolomei, M., et al.: The intermolecular potential in NO-N2 and (NO-N2) + systems: implications for the neutralization of ionic molecular aggregates. PCCP 10(39), 5993–6001 (2008)

    Google Scholar 

  35. de Petris, G., Cartoni, A., Rosi, M., Barone, V., Puzzarini, C., Troiani, A.: The proton affinity and gas-phase basicity of sulfur dioxide. ChemPhysChem 12(1), 112–115 (2011)

    Google Scholar 

  36. Leonori, F., et al.: Observation of organosulfur products (thiovinoxy, thioketene and thioformyl) in crossed-beam experiments and low temperature rate coefficients for the reaction S(1D) + C2H4. Phys. Chem. Chem. Phys. 11(23), 4701–4706 (2009)

    Google Scholar 

  37. de Petris, G., Rosi, M., Troiani, A.: SSOH and HSSO radicals: an experimental and theoretical study of [S2OH]0/± species. J. Phys. Chem. A 111(28), 6526–6533 (2007)

    Google Scholar 

  38. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Leonori, F., Skouteris, D.: Theoretical study of reactions relevant for atmospheric models of titan: interaction of excited nitrogen atoms with small hydrocarbons. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 331–344. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_26

    Chapter  Google Scholar 

  39. Gaussian 09, Revision A.02, Frisch, M.J., et al.: Gaussian, Inc., Wallingford CT (2009)

    Google Scholar 

  40. Avogadro: an open-source molecular builder and visualization tool. Version 1.XX. (http://avogadro.cc)

  41. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics 4, 17 (2012)

    Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, for the Project “The Dawn of Organic Chemistry” (DOC), grant agreement No 741002 and from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 811312 for the project “Astro-Chemical Origins” (ACO). M.R. acknowledges the project “Indagini teoriche e sperimentali sulla reattività di sistemi di interesse astrochimico” funded by Fondo Ricerca di Base 2018 of the University of Perugia. DS wishes to thank “Master-Up” for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Skouteris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skouteris, D., Mancini, L., Vazart, F., Ceccarelli, C., Rosi, M., Balucani, N. (2020). A Theoretical Investigation of the Reaction Between Glycolaldehyde and H+ and Implications for the Organic Chemistry of Star Forming Regions. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12251. Springer, Cham. https://doi.org/10.1007/978-3-030-58808-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58808-3_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58807-6

  • Online ISBN: 978-3-030-58808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics