Skip to main content

A Computational Study on the Insertion of N(2D) into a C—H or C—C Bond: The Reactions of N(2D) with Benzene and Toluene and Their Implications on the Chemistry of Titan

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

The reactions between nitrogen atoms in their first electronically excited state 2D with benzene and toluene have been characterized by electronic structure calculations of the stationary points along the minimum energy path. We focused our attention, in particular, to the channels leading to the imidogen radical for the first reaction implying the insertion of nitrogen into a C—H bond and to the NCH3 radical for the second reaction implying the insertion of nitrogen into a C—C bond. The minima along these reaction paths have been characterized using different ab initio methods in order to find a reasonable compromise between chemical accuracy and computational costs. Our results suggest that, while for geometry optimizations even relatively low level calculations are adequate, for energies higher level of calculations are necessary in order to obtain accurate quantitative results, in particular when strong correlation effects are present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hörst, S.M.: Titan’s atmosphere and climate. J. Geophys. Res. Planets 122, 432–482 (2017)

    Article  Google Scholar 

  2. Vuitton, V., Yelle, R.V., Anicich, V.G.: The nitrogen chemistry of Titan’s upper atmosphere revealed. Astrophys. J. 647, L175–L178 (2006)

    Article  Google Scholar 

  3. Vuitton, V., Dutuit, O., Smith, M.A., Balucani, N.: Chemistry of Titan’s atmosphere. In: Mueller-Wodarg, I., Griffith, C., Lellouch, E., Cravens, T. (eds.) Titan: Surface, Atmosphere and Magnetosphere. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  4. Balucani, N.: Elementary reactions of N atoms with hydrocarbons: first steps towards the formation of prebiotic N-containing molecules in planetary atmospheres. Chem. Soc. Rev. 41, 5473–5483 (2012)

    Article  Google Scholar 

  5. Brown, R., Lebreton, J.P., Waite, J. (eds.): Titan from Cassini-Huygens. Springer, Netherlands (2010). https://doi.org/10.1007/978-1-4020-9215-2

  6. Lai, J.C.-Y., et al.: Mapping vinyl cyanide and other nitriles in Titan’s atmosphere using ALMA. Astron. J. 154(206), 1–10 (2017)

    Google Scholar 

  7. Vuitton, V., Yelle, R.V., Cui, J.: Formation and distribution of benzene on Titan. J. Geophys. Res. 113, E05007 (2008)

    Article  Google Scholar 

  8. Clark, R.N., et al.: Detection and mapping of hydrocarbon deposits on Titan. J. Geophys. Res. 115, E10005 (2010)

    Article  Google Scholar 

  9. Loison, J.C., Dobrijevic, M., Hickson, K.M.: The photochemical production of aromatics in the atmosphere of Titan. Icarus 329, 55–71 (2019)

    Article  Google Scholar 

  10. Lavvas, P., et al.: Energy deposition and primary chemical products in Titan’s upper atmosphere. Icarus 213, 233–251 (2011)

    Article  Google Scholar 

  11. Dutuit, O., et al.: Critical review of N, N+, N2+, N++ and N2++ main production processes and reactions of relevance to Titan’s atmosphere. Astrophys. J. Suppl. Ser. 204, 20 (2013)

    Article  Google Scholar 

  12. Balucani, N.: Nitrogen fixation by photochemistry in the atmosphere of Titan and implications for prebiotic chemistry. In: Trigo-Rodriguez, J.M., Raulin, F., Muller, C., Nixon, C. (eds.) The Early Evolution of the Atmospheres of Terrestrial Planets, edited by Springer Series in Astrophysics and Space Science Proceedings, vol. 35, pp. 155–164 (2013). https://doi.org/10.1007/978-1-4614-5191-4_12

  13. Balucani, N.: Elementary reactions and their role in gas-phase prebiotic chemistry. Int. J. Mol. Sci. 10, 2304–2335 (2009)

    Article  Google Scholar 

  14. Imanaka, H., Smith, M.A.: Formation of nitrogenated organic aerosols in the Titan upper atmosphere. PNAS 107, 12423–12428 (2010)

    Article  Google Scholar 

  15. Balucani, N., et al.: Dynamics of the N(2D) + D2 reaction from crossed-beam and quasiclassical trajectory studies. J. Phys. Chem. A 105, 2414–2422 (2001)

    Article  Google Scholar 

  16. Balucani, N., et al.: Experimental and theoretical differential cross sections for the N(2D) + H2 reaction. J. Phys. Chem. A 110, 817–829 (2006)

    Article  Google Scholar 

  17. Homayoon, Z., Bowman, J.M., Balucani, N., Casavecchia, P.: Quasiclassical trajectory calculations of the N(2D) + H2O reaction elucidating the formation mechanism of HNO and HON seen in molecular beam experiments. J. Phys. Chem. Lett. 5, 3508–3513 (2014)

    Article  Google Scholar 

  18. Balucani, N., Cartechini, L., Casavecchia, P., Homayoon, Z., Bowman, J.M.: A combined crossed molecular beam and quasiclassical trajectory study of the Titan-relevant N(2D) + D2O reaction. Mol. Phys. 113, 2296–2301 (2015)

    Article  Google Scholar 

  19. Israel, G., et al.: Complex organic matter in Titan’s atmospheric aerosols from in situ pyrolysis and analysis. Nature 438, 796 (2005)

    Article  Google Scholar 

  20. Balucani, N., et al.: Combined crossed molecular beam and theoretical studies of the N(2D) + CH4 reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 113, 11138–11152 (2009)

    Article  Google Scholar 

  21. Balucani, N., et al.: Cyanomethylene formation from the reaction of excited Nitrogen Atoms with Acetylene: A crossed beam and ab initio study. J. Am. Chem. Soc. 122, 4443–4450 (2000)

    Article  Google Scholar 

  22. Balucani, N., Cartechini, L., Alagia, M., Casavecchia, P., Volpi, G.G.: Observation of nitrogen-bearing organic molecules from reactions of nitrogen atoms with hydrocarbons: a crossed beam study of N(2D) + ethylene. J. Phys. Chem. A 104, 5655–5659 (2000)

    Article  Google Scholar 

  23. Balucani, N.: Formation of nitriles and imines in the atmosphere of Titan: combined crossed-beam and theoretical studies on the reaction dynamics of excited nitrogen atoms N(2D) with ethane. Faraday Discuss. 147, 189–216 (2010)

    Article  Google Scholar 

  24. Balucani, N., et al.: Combined crossed beam and theoretical studies of the N(2D) + C2H4 reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 116, 10467–10479 (2012)

    Article  Google Scholar 

  25. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Skouteris, D.: A theoretical study of formation routes and dimerization of methanimine and implications for the aerosols formation in the upper atmosphere of Titan. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 47–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_4

    Chapter  Google Scholar 

  26. Balucani, N., Pacifici, L., Skouteris, D., Caracciolo, A., Casavecchia, P., Rosi, M.: A theoretical investigation of the reaction N(2D) + C6H6 and implications for the upper atmosphere of Titan. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10961, pp. 763–772. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95165-2_53

    Chapter  Google Scholar 

  27. Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  Google Scholar 

  28. Stephens, P.J., Devlin, F.J., Chablowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994)

    Article  Google Scholar 

  29. Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980)

    Article  Google Scholar 

  30. Frisch, M.J., Pople, J.A., Binkley, J.S.: Self-consistent molecular orbital methods 25 Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984)

    Article  Google Scholar 

  31. Simon, S., Duran, M., Dannesberg, J.J.: How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 105, 11024–11031 (1996)

    Article  Google Scholar 

  32. Boys, S.F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    Article  Google Scholar 

  33. Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989)

    Article  Google Scholar 

  34. Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990)

    Article  Google Scholar 

  35. Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Article  Google Scholar 

  36. Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem. 32, 359–401 (1981)

    Article  Google Scholar 

  37. Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: Quadratic configuration interaction. A general technique for determining electron correlation energies. Chem. Phys. Lett. 157, 479–483 (1989)

    Article  Google Scholar 

  38. Olsen, J., Jorgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration–interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104, 8007–8015 (1996)

    Article  Google Scholar 

  39. de Petris, G., Cacace, F., Cipollini, R., Cartoni, A., Rosi, M., Troiani, A.: Experimental detection of theoretically predicted N2CO. Angew. Chem. 117, 466–469 (2005)

    Article  Google Scholar 

  40. De Petris, G., Rosi, M., Troiani, A.: SSOH and HSSO radicals: an experimental and theoretical study of [S2OH]0/+/- species. J. Phys. Chem. A 111, 6526–6533 (2007)

    Article  Google Scholar 

  41. Bartolomei, M., et al.: The intermolecular potential in NO-N2 and (NO-N2)+ systems: implications for the neutralization of ionic molecular aggregates. PCCP 10, 5993–6001 (2008)

    Article  Google Scholar 

  42. Leonori, F., et al.: Observation of organosulfur products (thiovinoxy, thioketene and thioformyl) in crossed-beam experiments and low temperature rate coefficients for the reaction S(1D) + C2H4. PCCP 11, 4701–4706 (2009)

    Article  Google Scholar 

  43. Leonori, F., et al.: Crossed-beam and theoretical studies of the S(1D) + C2H2 reaction. J. Phys. Chem. A 113, 4330–4339 (2009)

    Article  Google Scholar 

  44. De Petris, G., Cartoni, A., Rosi, M., Barone, V., Puzzarini, C., Troiani, A.: The proton affinity and gas-phase basicity of sulfur dioxide. ChemPhysChem 12, 112–115 (2011)

    Article  Google Scholar 

  45. Berteloite, C., et al.: Low temperature kinetics, crossed beam dynamics and theoretical studies of the reaction S(1D) + CH4 and low temperature kinetics of S(1D) + C2H2. Phys. Chem. Chem. Phys. 13, 8485 (2011)

    Article  Google Scholar 

  46. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Leonori, F., Skouteris, D.: Theoretical study of reactions relevant for atmospheric models of Titan: rocarbons. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 331–344. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_26

    Chapter  Google Scholar 

  47. Skouteris, D., Balucani, N., Faginas-Lago, N., Falcinelli, S., Rosi, M.: Dimerization of methanimine and its charged species in the atmosphere of Titan and interstellar/cometary ice analogs. Astron. Astrophys. 584, A76 (2015)

    Article  Google Scholar 

  48. Falcinelli, S., Rosi, M., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Stereoselectivity in autoionization reactions of hydrogenated molecules by metastable gas atoms: the role of electronic couplings. Chemistry Eur. J. 22, 12518–12526 (2016)

    Article  Google Scholar 

  49. Troiani, A., Rosi, M., Garzoli, S., Salvitti, C., de Petris, G.: Vanadium hydroxide cluster ions in the gas phase: bond-forming reactions of doubly-charged negative ions by SO2-promoted V-O activation. Chem. Eur. J. 23, 11752–11756 (2017)

    Article  Google Scholar 

  50. Rosi, M., et al.: An experimental and theoretical investigation of 1-butanol pyrolysis. Front. Chem. 7, 326 (2019). https://doi.org/10.3389/fchem.2019.00326

    Article  Google Scholar 

  51. Moore, C.E.: Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. N. 467 (U.S., GPO, Washington, DC, 1949)

    Google Scholar 

  52. Gaussian 09, Revision A.02, Frisch, M.J., et al.: Gaussian, Inc., Wallingford CT (2009)

    Google Scholar 

  53. Flükiger, P., Lüthi, H. P., Portmann, S., Weber, J.: MOLEKEL 4.3, Swiss Center for Scientific Computing, Manno (Switzerland), 2000–2002

    Google Scholar 

  54. Portmann, S., Lüthi, H.P.: MOLEKEL: an interactive molecular graphics tool. Chimia 54, 766–769 (2000)

    Google Scholar 

  55. Balucani, N., et al.: A computational study of the reaction N(2D) + C6H6 leading to pyridine and phenylnitrene. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11621, pp. 316–324. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24302-9_23

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has been supported by MIUR “PRIN 2015” funds, project “STARS in the CAOS (Simulation Tools for Astrochemical Reactivity and Spectroscopy in the Cyberinfrastructure for Astrochemical Organic Species)”, Grant Number 2015F59J3R. We acknowledge the Italian Space Agency for co-funding the Life in Space Project (ASI N. 2019-3-U.O). SF and MR acknowledge the project “Indagini teoriche e sperimentali sulla reattività di sistemi di interesse astrochimico” funded with Fondo Ricerca di Base 2018 of the University of Perugia. M.R. thanks the Dipartimento di Ingegneria Civile e Ambientale of the University of Perugia for allocated computing time within the project “Dipartimenti di Eccellenza 2018-2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzio Rosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosi, M. et al. (2020). A Computational Study on the Insertion of N(2D) into a C—H or C—C Bond: The Reactions of N(2D) with Benzene and Toluene and Their Implications on the Chemistry of Titan. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12251. Springer, Cham. https://doi.org/10.1007/978-3-030-58808-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58808-3_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58807-6

  • Online ISBN: 978-3-030-58808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics