Skip to main content

Handling Faults in Service Oriented Computing: A Comprehensive Study

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Recently, service-oriented computing paradigms have become a trending development direction, in which software systems are built using a set of loosely coupled services distributed over multiple locations through a service-oriented architecture. Such systems encounter different challenges, as integration, performance, reliability, availability, etc., which made all associated testing activities to be another major challenge to avoid their faults and system failures. Services are considered the substantial element in service-oriented computing. Thus, the quality of services and the service dependability in a web service composition have become essential to manage faults within these software systems. Many studies addressed web service faults from diverse perspectives. In this paper, a comprehensive study is conducted to investigate the different perspectives to manipulate web service faults, including fault tolerance, fault injection, fault prediction and fault localization. An extensive comparison is provided, highlighting the main research gaps, challenges and limitations of each perspective for web services. An analytical discussion is then followed to suggest future research directions that can be adopted to face such obstacles by improving fault handling capabilities for an efficient testing in service-oriented computing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mikalsen, T., Wohlstadter, E., Desai, N., Rouvellou, I., Tai, S.: Transaction policies for service-oriented computing. Data Knowl. Eng. 51(1), 59–79 (2004)

    Article  Google Scholar 

  2. Rao, J., Su, X.: A survey of automated web service composition methods. In: Cardoso, J., Sheth, A. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30581-1_5

    Chapter  Google Scholar 

  3. Griffiths, N., Chao, K.-M. (eds.): Agent-Based Service-Oriented Computing. AIKP. Springer, London (2010). https://doi.org/10.1007/978-1-84996-041-0

    Book  MATH  Google Scholar 

  4. Agarwal, H., Sharma, A.: A comprehensive survey of fault tolerance techniques in cloud computing. In: 2015 International Conference on Computing and Network Communications (CoCoNet). IEEE (2015)

    Google Scholar 

  5. Gupta, R., Kamal, R., Suman, U.: A QoS-supported approach using fault detection and tolerance for achieving reliability in dynamic orchestration of web services. Int. J. Inf. Technol. 10(1), 71–81 (2017). https://doi.org/10.1007/s41870-017-0066-z

    Article  Google Scholar 

  6. Shu, Y., Wu, Z., Liu, H., Gao, Y.: A simulation-based reliability analysis approach of the fault-tolerant web services. In: 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), pp. 125–129. IEEE (2016)

    Google Scholar 

  7. Fekih, H., Mtibaa, S., Bouamama, S.: The dynamic reconfiguration approach for fault-tolerance web service composition based on multi-level VCSOP. Procedia Comput. Sci. 159, 1527–1536 (2019)

    Article  Google Scholar 

  8. Chen, L., Liu, L., Shang, J.: Fault tolerance for web service based on component importance in service networks. In: Proceedings of the Fifth International Conference on Network, Communication and Computing (2016)

    Google Scholar 

  9. Kargar, A., Emadi, S.: Fault tolerance in automatic semantic web service composition based on QoS-awareness using BTSC-DFS algorithm. In: 5th International Conference on Web Research (ICWR), pp. 50–54. IEEE (2019)

    Google Scholar 

  10. Chen, L., Fan, G., Liu, Y.: A formal method to model and analyse QoS-aware fault tolerant service composition. Int. J. Comput. Sci. Eng. 12(2–3), 133–145 (2016)

    Google Scholar 

  11. Veeresh, P., Sam, R.P., Bin, C.S.: Reliable fault tolerance system for service composition in mobile Ad Hoc network. Int. J. Electr. Comput. Eng. 9, 2523–2533 (2019)

    Google Scholar 

  12. Liu, J., Zhou, J., Buyya, R.: Software rejuvenation based fault tolerance scheme for cloud applications. In: 2015 IEEE 8th International Conference on Cloud Computing. IEEE (2015)

    Google Scholar 

  13. Siavvas, M., Gelenbe, E.: Optimum checkpoints for programs with loops. Simul. Model. Pract. Theory 97, 101951 (2019). https://doi.org/10.1016/j.simpat.2019.101951. ISSN 1569-190X

    Article  Google Scholar 

  14. Stavrinides, G.L., Karatza, H.D.: The impact of checkpointing interval selection on the scheduling performance of real-time fine-grained parallel applications in SaaS clouds under various failure probabilities. Concurrency Comput. Pract. Exp. 30(12), e4288 (2018)

    Article  Google Scholar 

  15. Farj, K., Smeda, A.: A methodology for evaluating fault tolerance in web service applications. In: Proceedings of the 15th International Conference on Applied Computer Science (ACS 2015), pp. 188–191 (2015)

    Google Scholar 

  16. Jhawar, R., Piuri, V.: Fault tolerance and resilience in cloud computing environments. In: Computer and Information Security Handbook, 1 January 2017, pp. 165–181. Morgan Kaufmann, Burlington (2017)

    Google Scholar 

  17. Kumar, S., Rana, D.S., Dimri, S.C.: Fault tolerance and load balancing algorithm in cloud computing: A survey. Int. J. Adv. Res. Comput. Commun. Eng. 4(7), 92–96 (2015)

    Google Scholar 

  18. Vargas-Santiago, M., Hernández, S.E., Rosales, L.A., Kacem, H.H.: Survey on web services fault tolerance approaches based on checkpointing mechanisms. JSW 12(7), 507–525 (2017)

    Article  Google Scholar 

  19. Angarita, R., Rukoz, M., Cardinale, Y.: Modeling dynamic recovery strategy for composite web services execution. World Wide Web 19(1), 89–109 (2015). https://doi.org/10.1007/s11280-015-0329-1

    Article  Google Scholar 

  20. Bashari, M., Bagheri, E., Du, W.: Self-adaptation of service compositions through product line reconfiguration. J. Syst. Softw. 144, 84–105 (2018)

    Article  Google Scholar 

  21. Xu, H., Yang, B., Qi, W., Ahene, E.: A multi-objective optimization approach to workflow scheduling in clouds considering fault recovery. KSII Trans. Internet Inf. Syst. (2016)

    Google Scholar 

  22. Rathore, S.S., Kumar, S.: A study on software fault prediction techniques. Artif. Intell. Rev. 51(2), 255–327 (2017). https://doi.org/10.1007/s10462-017-9563-5

    Article  Google Scholar 

  23. Bhandari, G.P., Gupta, R., Upadhyay, S.K.: An approach for fault prediction in SOA-based systems using machine learning techniques. Data Technol. Appl. 53(4), 397–421 (2019)

    Article  Google Scholar 

  24. Ding, Z., Xu, T., Ye, T., Zhou, Y.: Online prediction and improvement of reliability for service oriented systems. IEEE Trans. Reliab. 65(3), 1133–1148 (2016)

    Article  Google Scholar 

  25. Malhotra, R.: A systematic review of machine learning techniques for software fault prediction. Appl. Soft Comput. 27, 504–518 (2015)

    Article  Google Scholar 

  26. Catal, C., Akbulut, A., Ekenoglu, E., Alemdaroglu, M.: Development of a software vulnerability prediction web service based on artificial neural networks. In: Kang, U., Lim, E.-P., Yu, J.X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10526, pp. 59–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67274-8_6

    Chapter  Google Scholar 

  27. Chatterjee, S., Roy, A.: Novel algorithms for web software fault prediction. Qual. Reliab. Eng. Int. 31(8), 1517–1535 (2015)

    Article  Google Scholar 

  28. Öztürk, M.M., Cavusoglu, U., Zengin, A.: A novel defect prediction method for web pages using k-means++. Exp. Syst. Appl. 42(19), 6496–6506 (2015)

    Article  Google Scholar 

  29. Biçer, M.S., Diri, B.: Predicting defect prone modules in web applications. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2015. CCIS, vol. 538, pp. 577–591. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24770-0_49

    Chapter  Google Scholar 

  30. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault localization. IEEE Trans. Softw. Eng. 42(8), 707–740 (2016)

    Article  Google Scholar 

  31. Zou, D., Liang, J., Xiong, Y., Ernst, M.D., Zhang, L.: An empirical study of fault localization families and their combinations. IEEE Trans. Softw. Eng. (2019)

    Google Scholar 

  32. Ghawate, S.B., Shinde, S.: Survey of software fault localization for web application. Int. J. Curr. Eng. Technol. 5(3), 1525–1529 (2015)

    Google Scholar 

  33. Sun, C.A., Ran, Y., Zheng, C., Liu, H., Towey, D., Zhang, X.: Fault localisation for WS-BPEL programs based on predicate switching and program slicing. J. Syst. Softw. 135, 191–204 (2018)

    Article  Google Scholar 

  34. Tang, Y., Cheng, G., Xu, Z., Chen, F., Elmansor, K., Wu, Y.: Automatic belief network modeling via policy inference for SDN fault localization. J. Internet Serv. Appl. 7(1), 1–13 (2016). https://doi.org/10.1186/s13174-016-0043-y

    Article  Google Scholar 

  35. Wong, W.E., Debroy, V.: A survey of software fault localization. Department of Computer Science, University of Texas at Dallas (2009)

    Google Scholar 

  36. Qian, J., Wu, H., Chen, H., Li, C., Li, W.: Fault injection for performance testing of composite web services. Int. J. Performability Eng. 14(6), 1314–1323 (2018)

    Google Scholar 

  37. Pham, C., et al.: Failure diagnosis for distributed systems using targeted fault injection. IEEE Trans. Parallel Distrib. Syst. 28(2), 503–516 (2016)

    Google Scholar 

  38. Dal Lago, L., Ferrante, O., Passerone, R., Ferrari, A.: Dependability assessment of SOA-based CPS with contracts and model-based fault injection. IEEE Trans. Ind. Inf. 14(1), 360–369 (2017)

    Article  Google Scholar 

  39. Irrera, I., Vieira, M.: Towards assessing representativeness of fault injection-generated failure data for online failure prediction. In: 2015 IEEE International Conference on Dependable Systems and Networks Workshops. IEEE (2015)

    Google Scholar 

  40. Herscheid, L., Richter, D., Polze, A.: Experimental assessment of cloud software dependability using fault injection. In: Camarinha-Matos, L.M., Baldissera, T.A., Di Orio, G., Marques, F. (eds.) DoCEIS 2015. IAICT, vol. 450, pp. 121–128. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16766-4_13

    Chapter  Google Scholar 

  41. Salas, M.I., De Geus, P.L., Martins, E.: Security testing methodology for evaluation of web services robustness-case: XML injection. In: 2015 IEEE World Congress on Services. IEEE (2015)

    Google Scholar 

  42. Bhor, R.V., Khanuja, H.K.: Analysis of web application security mechanism and attack detection using vulnerability injection technique. In: 2016 International Conference on Computing Communication Control and automation (ICCUBEA). IEEE (2016)

    Google Scholar 

  43. Yin, Y., Li, Y.: Towards dynamic reconfiguration for QoS consistent services based applications. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 771–778. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34321-6_61

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherin Moussa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

ElGhondakly, R., Moussa, S., Badr, N. (2020). Handling Faults in Service Oriented Computing: A Comprehensive Study. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12252. Springer, Cham. https://doi.org/10.1007/978-3-030-58811-3_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58811-3_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58810-6

  • Online ISBN: 978-3-030-58811-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics