Abstract
Recommender systems (RSs) represent one of the manifold applications in which Machine Learning can unfold its potential. Nowadays, most of the major online sites selling products and services provide users with RSs that can assist them in their online experience. In recent years, therefore, we have witnessed an impressive series of proposals for novel recommendation techniques that claim to ensure significative improvements compared to classic techniques. In this work, we analyze some of them from a theoretical and experimental point of view and verify whether they can deliver tangible real improvements in terms of performance. Among others, we have experimented with traditional model-based and memory-based collaborative filtering, up to the most recent recommendation techniques based on deep learning. We have chosen the movie domain as an application scenario, and a version of the classic MovieLens as a dataset for training and testing our models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
grouplens.org/datasets/movielens/100k/ (Accessed: June 23, 2020).
References
Aggarwal, C.C.: Recommender Systems: The Textbook, 1st edn. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3
Biancalana, C., Flamini, A., Gasparetti, F., Micarelli, A., Millevolte, S., Sansonetti, G.: Enhancing traditional local search recommendations with context-awareness. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 335–340. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22362-4_29
Biancalana, C., Gasparetti, F., Micarelli, A., Miola, A., Sansonetti, G.: Context-aware movie recommendation based on signal processing and machine learning. In: Proceedings of the 2nd Challenge on Context-Aware Movie Recommendation. CAMRa 2011, pp. 5–10. ACM, New York (2011)
Bologna, C., De Rosa, A.C., De Vivo, A., Gaeta, M., Sansonetti, G., Viserta, V.: Personality-based recommendation in e-commerce. In: CEUR Workshop Proceedings, Aachen, Germany, vol. 997. CEUR-WS.org (2013)
Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_12
Caldarelli, S., Feltoni Gurini, D., Micarelli, A., Sansonetti, G.: A signal-based approach to news recommendation. In: CEUR Workshop Proceedings, Aachen, Germany, vol. 1618. CEUR-WS.org (2016)
Colombo-Mendoza, L.O., Paredes-Valverde, M.A., Salas-Zárate, M.P., Bustos-López, M., Sánchez-Cervantes, J.L., Alor-Hernández, G.: Recommender systems in the offline retailing domain: a systematic literature review. In: García-Alcaraz, J.L., Sánchez-Ramírez, C., Avelar-Sosa, L., Alor-Hernández, G. (eds.) Techniques, Tools and Methodologies Applied to Global Supply Chain Ecosystems. ISRL, vol. 166, pp. 383–409. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26488-8_17
D’Aniello, G., Gaeta, M., Orciuoli, F., Sansonetti, G., Sorgente, F.: Knowledge-based smart city service system. Electronics (Switzerland) 9(6), 1–22 (2020)
De Angelis, A., Gasparetti, F., Micarelli, A., Sansonetti, G.: A social cultural recommender based on linked open data. In: Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization. UMAP 2017, pp. 329–332, ACM, New York (2017)
Gurini, D.F., Gasparetti, F., Micarelli, A., Sansonetti, G.: iSCUR: interest and sentiment-based community detection for user recommendation on Twitter. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.) UMAP 2014. LNCS, vol. 8538, pp. 314–319. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08786-3_27
Feltoni Gurini, D., Gasparetti, F., Micarelli, A., Sansonetti, G.: Temporal people-to-people recommendation on social networks with sentiment-based matrix factorization. Future Gener. Comput. Syst. 78, 430–439 (2018)
Fogli, A., Sansonetti, G.: Exploiting semantics for context-aware itinerary recommendation. Pers. Ubiquit. Comput. 23(2), 215–231 (2019). https://doi.org/10.1007/s00779-018-01189-7
Gasparetti, F., Micarelli, A., Sansonetti, G.: Exploiting web browsing activities for user needs identification. In: 2014 International Conference on Computational Science and Computational Intelligence, vol. 2, pp. 86–89, March 2014
Hassan, H.A.M., Sansonetti, G., Gasparetti, F., Micarelli, A.: Semantic-based tag recommendation in scientific bookmarking systems. In: Proceedings of the 12th ACM Conference on Recommender Systems. RecSys 2018, pp. 465–469. ACM, New York (2018)
Hassan, H.A.M., Sansonetti, G., Gasparetti, F., Micarelli, A., Beel, J.: BERT, ELMo, USE and InferSent sentence encoders: the panacea for research-paper recommendation? In: Tkalcic, M., Pera, S. (eds.) Proceedings of ACM RecSys 2019 Late-Breaking Results, vol. 2431, pp. 6–10. CEUR-WS.org (2019)
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering. CoRR abs/1708.05031 (2017)
Idrissi, N., Zellou, A.: A systematic literature review of sparsity issues in recommender systems. Soc. Netw. Anal. Min. 10(1), 1–23 (2020). https://doi.org/10.1007/s13278-020-0626-2
Isinkaye, F., Folajimi, Y., Ojokoh, B.: Recommendation systems: principles, methods and evaluation. Egypt. Inform. J. 16(3), 261–273 (2015)
Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction, 1st edn. Cambridge University Press, New York (2010)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR) (2015)
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collaborative filtering. In: Proceedings of SIAM Data Mining (SDM 2005) (2005)
Micarelli, A., Neri, A., Sansonetti, G.: A case-based approach to image recognition. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 443–454. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44527-7_38
Onori, M., Micarelli, A., Sansonetti, G.: A comparative analysis of personality-based music recommender systems. In: CEUR Workshop Proceedings, Aachen, Germany, vol. 1680, pp. 55–59. CEUR-WS.org (2016)
Ricci, F.: Recommender systems in tourism. In: Handbook of e-Tourism, pp. 1–18 (2020)
Saha, J., Chowdhury, C., Biswas, S.: Review of machine learning and deep learning based recommender systems for health informatics. In: Dash, S., Acharya, B.R., Mittal, M., Abraham, A., Kelemen, A. (eds.) Deep Learning Techniques for Biomedical and Health Informatics. SBD, vol. 68, pp. 101–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33966-1_6
Sansonetti, G.: Point of interest recommendation based on social and linked open data. Pers. Ubiquit. Comput. 23(2), 199–214 (2019). https://doi.org/10.1007/s00779-019-01218-z
Sansonetti, G., Feltoni Gurini, D., Gasparetti, F., Micarelli, A.: Dynamic social recommendation. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017. ASONAM 2017, pp. 943–947. ACM, New York (2017)
Sansonetti, G., Gasparetti, F., Micarelli, A., Cena, F., Gena, C.: Enhancing cultural recommendations through social and linked open data. User Model. User Adap. Inter. 29(1), 121–159 (2019). https://doi.org/10.1007/s11257-019-09225-8
Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D Nonlinear Phenom. 404, 132306 (2020)
Silveira, T., Zhang, M., Lin, X., Liu, Y., Ma, S.: How good your recommender system is? a survey on evaluations in recommendation. Int. J. Mach. Learn. Cybern. 10(5), 813–831 (2019). https://doi.org/10.1007/s13042-017-0762-9
Tegmark, M.: Life 3.0: Being Human in the Age of Artificial Intelligence. Knopf Publishing Group, New York City (2017)
Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. 52(1), 1–38 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Valeriani, D., Sansonetti, G., Micarelli, A. (2020). A Comparative Analysis of State-of-the-Art Recommendation Techniques in the Movie Domain. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12252. Springer, Cham. https://doi.org/10.1007/978-3-030-58811-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-58811-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58810-6
Online ISBN: 978-3-030-58811-3
eBook Packages: Computer ScienceComputer Science (R0)