Skip to main content

An Approach to Classify Burned Areas Using Few Previously Validated Samples

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Monitoring the large number of active fires and their consequences in such an extensive area such as the Brazilian territory is an important task. Machine Learning techniques are a promising approach to contribute to this area, but the challenge is the building of rich example datasets, whose previous examples are unavailable in many areas. Our aim in this article is to move towards the development of an approach to detect burned areas in regions for which there is no previously validated samples. We deal with that by presenting some experiments to classify burned areas through Machine Learning techniques that combine remote sensing data from nearby areas and it can distinguish between burned and non burned polygons with good results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Andrade, R.N., Bittencourt, O., Morelli, F., Santos, R.: Classificação semiautomática de áreas queimadas com o uso de redes neurais. In: XVIII Brazilian Symposium on Geoinformatics - GeoInfo 2017, pp. 92–97 (2017)

    Google Scholar 

  2. Bittencourt, O.O., Morelli, F., dos Santos Júnior, C.A., Santos, R.: Evaluating classification models in a burned areas’ detection approach. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11622, pp. 577–591. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24305-0_43

    Chapter  Google Scholar 

  3. Bowman, D., et al.: Fire in the earth system. Science 324, 481–484 (2009)

    Article  Google Scholar 

  4. Chuvieco, E., Martín, M.: Cartografí de grandes incendios forestales en la península ibérica a partir de imágenes noaa-avhrr. Serie Geográfica 7, 109–128 (1998)

    Google Scholar 

  5. Chuvieco, E., et al.: Historical background and current developments for mapping burned area from satellite earth observation. In: Remote Sensing of Environment (2019)

    Google Scholar 

  6. Instituto Nacional de Pesquisas Espaciais (INPE): Programa de monitoramento de queimadas. http://www.inpe.br/queimadas/portal. Accessed 28 Jan 2018

  7. Instituto Nacional de Pesquisas Espaciais (INPE): Programa de monitoramento de queimadas, área queimada, resolu cão 30m. https://prodwww-queimadas.dgi.inpe.br/aq30m/. Accessed 28 Jan 2018

  8. JPI Climate and European Union: Serv-for fire integrated services and approaches for assessing effects of climate change and extreme events for fire and post fire risk prevention. https://servforfire-era4cs.eu/

  9. Katagis, T., Gitas, I., Toukiloglou, P., Veraverbeke, S., Goossens, R.: Trend analysis of medium- and coarse-resolution time series image data for burned area mapping in a Mediterranean ecosystem. Int. J. Wildland Fire 23, 668–677 (2014)

    Article  Google Scholar 

  10. Key, C., Benson, N.: Landscape assessment: Ground measure of severity, the composite burn index; and remote sensing of severity, the normalized burn ratio. In: FIREMON: Fire Effects Monitoring and Inventory System, pp. 1–51 (2006)

    Google Scholar 

  11. Li, J., Roy, D.: A global analysis of sentinel-2a, sentinel-2b and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 9, 902 (2017)

    Article  Google Scholar 

  12. Liu, J., Heiskanen, J., Maeda, E.E., Pellikka, P.K.: Burned area detection based on Landsat time series in savannas of southern Burkina Faso. Int. J. Appl. Earth Obser. Geoinf. 64, 210–220 (2018)

    Article  Google Scholar 

  13. Smith, A.M.S., Drake, N.A., Wooster, M.J., Hudak, A.T., Holden, Z.A., Gibbons, C.J.: Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS. Int. J. Remote Sens. 28, 2753–2775 (2007)

    Article  Google Scholar 

  14. McFeeters, S.: The use of normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432 (1996)

    Article  Google Scholar 

  15. Melchiori, E., Setzer, A.W., Morelli, F., Libonati, R., Cândido, P.d.A., Jesús, S.C.d.: A Landsat-TM/OLI Algorithm for Burned Areas in the Brazilian Cerrado: Preliminary Results, pp. 1302–1311. Imprensa da Universidade de Coimbra (2014)

    Google Scholar 

  16. Mithal, V., Nayak, G., Khandelwal, A., Kumar, V., Nemani, R., Oza, N.C.: Mapping burned areas in tropical forests using a novel machine learning framework. Remote Sens. 10, 69 (2018)

    Article  Google Scholar 

  17. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Pereira, A.A., et al.: Burned area mapping in the Brazilian savanna using a one-class support vector machine trained by active fires. Remote Sens. 9(11), 1161 (2017)

    Article  Google Scholar 

  19. Pinty, B., Verstraete, M.: GEMI: a non-linear index to monitor global vegetation from satellites. Vegetation 101, 15–20 (1992). https://doi.org/10.1007/BF00031911

    Article  Google Scholar 

  20. Rouse Jr., J.W., Haas, R.H., Schell, J.A., Deering, D.W.: Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Special Publication, vol. 351, p. 309 (1974)

    Google Scholar 

  21. Trigg, S., Flasse, S.: An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. Int. J. Remote Sens. 22, 2641–2647 (2001)

    Article  Google Scholar 

  22. United States Geological Survey (USGS): Science Data Lifecycle. https://earthexplorer.usgs.gov. Accessed 18 Oct 2018

Download references

Acknowledgements

This study was supported by National Council for Scientific and Technological Development (CNPq)/Coordination of Associated Laboratories (COCTE/INPE) (no. 300587/2017-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bittencourt, O.O., Morelli, F., Júnior, C.A.S., Santos, R. (2020). An Approach to Classify Burned Areas Using Few Previously Validated Samples. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12253. Springer, Cham. https://doi.org/10.1007/978-3-030-58814-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58814-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58813-7

  • Online ISBN: 978-3-030-58814-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics