Skip to main content

Physical and Numerical Models of Atmospheric Urban Dispersion of Pollutants

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12253))

Included in the following conference series:

Abstract

In this paper the application of numerical and physical models for the simulation of airborne pollutants in urban areas are presented. The assessment of the impact of cruise ships during the hoteling phase in the port of Naples is considered as case study. A physical model of the urban area of Naples has been realized (scale 1:500) and tested in the wind tunnel facility of the Ecole Central de Lyon. Results of wind tunnel tests are compared with CALPUFF and CFD simulations with the aim to validate the performances of the models. The results obtained give useful information for an optimized use of dispersion models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nunez, M., Oke, T.R.: The energy balance of an urban canyon. J. Appl. Meteorol. 16(1), 11–19 (1977)

    Article  Google Scholar 

  2. Oke, T.R.: Boundary Layer Climates, 2nd edn. Methuen, London (1987)

    Google Scholar 

  3. Vardoulakis, S., Fisher, B.E.A., Pericleous, K., Gonzalez-Flesca, N.: Modelling air quality in street canyons: a review. Atmos. Environ. 37, 155–182 (2003)

    Article  Google Scholar 

  4. Sini, J.F., Anquetin, S., Mestayer, P.G.: Pollutant dispersion and thermal effects (1996)

    Google Scholar 

  5. Ratti, C., Di Sabatino, S., Britter, R.E., Brown, M., Caton, F., Burian, S.: Analysis of 3-D urban databases with respect to pollution dispersion for a number of European and American cities. Water Air Soil Pollut. 2, 459–469 (2002)

    Article  Google Scholar 

  6. Johnson, W.B., Ludwig, F.L., Dabberdt, W.F., Allen, R.J.: An urban diffusion simulation model for carbon monoxide. J. Air Pollut. Control Assoc. 23, 490–498 (1973)

    Article  Google Scholar 

  7. Yamartino, R.J., Wiegand, G.: Development and evaluation of simple models for the flow, turbulence and pollutant concentration fields within an urban street canyon. Atmos. Environ. 20, 2137–2156 (1986)

    Article  Google Scholar 

  8. Hertel, O., Berkowicz, R.: Modelling pollution from traffic in a street canyon. evaluation of data and model development. Technical report, DMU Luft A–129, NERI (1989)

    Google Scholar 

  9. Salizzoni, P., Soulhac, L., Mejean, P.: Street canyon ventilation and atmospheric turbulence. Atmos. Environ. 43, 5056–5067 (2009)

    Article  Google Scholar 

  10. Murena, F., Di Benedetto, A., D’Onofrio, M., Vitiello, G.: Mass transfer velocity and momentum vertical exchange in simulated deep street canyons. Bound.-Layer Meteorol. 140, 125–142 (2011)

    Article  Google Scholar 

  11. Chung, T.N., Liu, C.H.: On the mechanism of air pollutant removal in two-dimensional idealized street canyons: a large-eddy simulation approach. Bound.-Layer Meteorol. 148(1), 241–253 (2013)

    Article  Google Scholar 

  12. Yaghoobian, N., Kleissl, J., Paw, U.K.T.: An improved three-dimensional simulation of the diurnally varying street-canyon flow. Bound.-Layer Meteorol. 153, 251–276 (2014)

    Article  Google Scholar 

  13. Berkowicz, R., Hertel, O., Larsen, S.E., Sorensen, N.N., Nielsen, M.: Modelling traffic pollution in streets. Ministry of Environment and Energy, National Environmental Research Institute, Roskilde, 55 p. (1997)

    Google Scholar 

  14. Soulhac, L., Salizzoni, P., Mejean, P., Perkins, R.J.: Parametric laws to model urban pollutant dispersion with a street network approach. Atmos. Environ. 67, 229–241 (2013)

    Article  Google Scholar 

  15. Prati, M.V., Costagliola, M.A., Quaranta, F., Murena, F.: Assessment of ambient air quality in the port of Naples. J. Air Waste Manage. Assoc. 65(8), 970–979 (2015)

    Article  Google Scholar 

  16. Murena, F., Mocerino, L., Quaranta, F., Toscano, D.: Impact on air quality of cruise ship emissions in Naples, Italy. Atmos. Environ. 187, 70–83 (2018)

    Article  Google Scholar 

  17. CERC: ADMS-Urban, USER Guide. Available from Cambridge Environmental Research Consultants, Cambridge, UK (2006)

    Google Scholar 

  18. McHugh, C.A., Carruthers, D.J., Edmunds, H.A.: Adms-urban: an air qualitymanagement system for traffic, domestic and industrial pollution. Int. J. Environ. Pollut. 8, 666–674 (1997)

    Google Scholar 

  19. Soulhac, L., Salizzoni, P., Cierco, F.-X., Perkins, R.J.: The model SIRANE for atmospheric urban pollutant dispersion: part I, presentation of the model. Atmos. Environ. 45, 7379–7395 (2011)

    Article  Google Scholar 

  20. Gailis, R.M., Hill, A.: A wind tunnel simulation of plume dispersion within a large array of obstacles. Bound.-Layer Meteorol. 119, 289–338 (2006)

    Article  Google Scholar 

  21. Garbero, V., Salizzoni, P., Soulhac, L., Méjean, P.: Experimental study of pollutant dispersion within a network of streets. Bound.-Layer Meteorol. 136(3), 457–487 (2010)

    Article  Google Scholar 

  22. Marucci, D., Carpinteri, M.: Dispersion in an array of buildings in stable and convective atmospheric conditions. Atmos. Environ. 220, 117100 (2020)

    Article  Google Scholar 

  23. Carpentieri, M., Salizzoni, P., Robins, A., Soulhac, L.: Evaluation of a neigh-bourhood scale, street network dispersion model through comparison with wind tunnel data. Environ. Modell. Softw. 37, 110–124 (2012)

    Article  Google Scholar 

  24. Ben Salem, N., Garbero, V., Salizzoni, P., Lamaison, G., Soulhac, L.: Modelling pollutant dispersion in a street network. Bound.-Layer Meteorol. 155(1), 157–187 (2015)

    Article  Google Scholar 

  25. Soulhac, L., et al.: SIRANERISK: modelling dispersion of steady and unsteady pollutant releases in the urban canopy. Atmos. Environ. 140, 242–260 (2016)

    Article  Google Scholar 

  26. Murena, F., Mele, B.: Effect of balconies on air quality in deep street canyons. Atmos. Pollut. Res. 7(6), 1004–1012 (2016)

    Article  Google Scholar 

  27. Murena, F., Mele, B.: Effect of shortetime variations of wind velocity on mass transfer rate between street canyons and the atmospheric boundary layer. Atmos. Pollut. Res. 5, 484–490 (2014)

    Article  Google Scholar 

  28. Annual Report on the Quality of the Urban Environment. http://www.isprambiente.gov.it

  29. Irwin, H.P.A.H.: The design of spires for wind simulation. J. Wind Eng. Ind. Aerodyn. 7(3), 361–366 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Toscano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toscano, D., Marro, M., Mele, B., Murena, F., Salizzoni, P. (2020). Physical and Numerical Models of Atmospheric Urban Dispersion of Pollutants. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12253. Springer, Cham. https://doi.org/10.1007/978-3-030-58814-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58814-4_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58813-7

  • Online ISBN: 978-3-030-58814-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics