Skip to main content

Formal Language Model for Transcriptome and Proteome Data Integration

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

We present in this article, for the area of structural and functional genetics, a preliminary theoretical model based on the representation of transcriptomes and proteomes as families of formal languages, in which the phenomenon of translation is described as a artificial language transduction process (present in programming languages compilers), making it possible to unify the transcriptomic and proteomic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartocci, E., Lió, P.: Computational modeling, formal analysis, and tools for systems biology. PLoS Comput. Biol. 12(1), e1004591 (2016)

    Article  Google Scholar 

  2. Berstel, J.: Transductions and Context-Free Languages. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  3. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata, vol. 129. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  4. Bessant, C., et al.: Proteome informatics. Royal Society of Chemistry (2016)

    Google Scholar 

  5. Butcher, E.C., Berg, E.L., Kunkel, E.J.: Systems biology in drug discovery. Nat. Biotechnol. 22(10), 1253–1259 (2004)

    Article  Google Scholar 

  6. Cellerino, A., Sanguanini, M.: Transcriptome Analysis: Introduction and Examples from the Neurosciences, vol. 17. Springer, Heidelberg (2018). https://doi.org/10.1007/978-88-7642-642-1

    Book  MATH  Google Scholar 

  7. Datta, S., Mukhopadhyay, S.: A grammar inference approach for predicting kinase specific phosphorylation sites. PLoS One 10(4), e0122294 (2015)

    Google Scholar 

  8. Fan, M., et al.: Integration of deep transcriptome and proteome analyses of salicylic acid regulation high temperature stress in ulva prolifera. Sci. Rep. 7(1), 1–19 (2017)

    Google Scholar 

  9. Gross, F.: The impact of formal reasoning in computational biology. In: Bertolaso, M., Sterpetti, F. (eds.) A Critical Reflection on Automated Science. HPHST, vol. 1, pp. 139–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25001-0_7

    Chapter  Google Scholar 

  10. Hartwell, L., Goldberg, M.L., Fischer, J.A., Hood, L.E., Aquadro, C.F.: Genetics: from Genes to Genomes. McGraw-Hill, New York (2008)

    Google Scholar 

  11. Hopcroft, J.E.: Introduction to Automata Theory, Languages, and Computation. Pearson Addison Wesley, Boston (2007)

    Google Scholar 

  12. Kahl, G.: The Dictionary of Genomics, Transcriptomics and Proteomics. Wiley, Hoboken (2015)

    Google Scholar 

  13. Kitano, H.: Systems biology: a brief overview. Science 295(5560), 1662–1664 (2002)

    Google Scholar 

  14. Klug, W.S., Cummings, M.R., Spencer, C.A., Palladino, M.A.: Concepts of Genetics. Benjamin Cummings, San Francisco (2014)

    Google Scholar 

  15. Kumar, D., Bansal, G., Narang, A., Basak, T., Abbas, T., Dash, D.: Integrating transcriptome and proteome profiling: strategies and applications. Proteomics 16(19), 2533–2544 (2016)

    Google Scholar 

  16. Nutaro, J.J.: Building Software for Simulation: Theory and Algorithms, with Application in C++. Wiley Online Library, Hoboken (2011)

    MATH  Google Scholar 

  17. Pierce, B.A.: Genetics: A Conceptual Approach. Macmillan, New York (2012)

    Google Scholar 

  18. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages: Volume 3 Beyond Words. Springer, Heidelberg (2012)

    Google Scholar 

  19. Searls, D.B.: The language of genes. Nature 420(6912), 211–217 (2002)

    Google Scholar 

  20. Sempere, J.M.: On compensation loops in genomic duplications. Int. J. Found. Comput. Sci. 31(01), 133–142 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Zhu, W., et al.: Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol. Lett. 312, 1–10 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Santos Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Silva Filho, R.I., de Azevedo da Rocha, R.L., Oliveira, C.S. (2020). Formal Language Model for Transcriptome and Proteome Data Integration. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12253. Springer, Cham. https://doi.org/10.1007/978-3-030-58814-4_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58814-4_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58813-7

  • Online ISBN: 978-3-030-58814-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics