Abstract
Interior architecture is part of the individual, social and business life of the human being; it allows structuring the spaces to inhabit, study or work. This document presents the design and implementation of a system that allows the three-dimensional reconstruction of objects with a reduced economic investment. The image acquisition process and treatment of the information with mathematical support that it entails are described. The system involves an MS Kinect as a tool to create a radar that operates with the structured light principle to capture objects at a distance of less than 2 meters. The development of the scripts is done in the MATLAB software and in the same way the graphical interface that is presented to the user. As part of the initial tests of this prototype, the digitization of geometric shape structures has been performed with an accuracy of over 98%. This validates its efficient operation, which serves as the basis for the development of modeling in interior architecture for future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fernández-S, Á., Salazar-L, F., Jurado, M., Castellanos, E.X., Moreno-P, R., Buele, J.: Electronic system for the detection of chicken eggs suitable for incubation through image processing. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’19 2019. AISC, vol. 931, pp. 208–218. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16184-2_21
Hugeng, H., Anggara, J., Gunawan, D.: Implementation of 3D HRTF interpolation in synthesizing virtual 3D moving sound. Int. J. Technol. (2017). https://doi.org/10.14716/ijtech.v8i1.6859
Elsayed, M., Soe, M.T., Kit, W.W., Abdalla, H.: An innovative approach to developing a 3D virtual map creator using an ultrasonic sensor array. Int. J. Technol. (2019). https://doi.org/10.14716/ijtech.v10i7.3245
Protasov, A.: Active infrared testing of composites using 3D computer simulation. Int. J. Technol. (2018). https://doi.org/10.14716/ijtech.v9i3.218
Taylor, M.: Lifshitz holography. Class. Quantum Gravity (2016). https://doi.org/10.1088/0264-9381/33/3/033001
Chiani, M., Giorgetti, A., Paolini, E.: Sensor Radar for object tracking (2018). https://doi.org/10.1109/JPROC.2018.2819697
Meinl, F., Stolz, M., Kunert, M., Blume, H.: An experimental high performance radar system for highly automated driving. In: 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility, ICMIM 2017 (2017). https://doi.org/10.1109/ICMIM.2017.7918859
Moreno Avilés, D., Mejía, J., Moreno, H.: Desarrollo de un algoritmo en MATLAB para la optimización de la resolución de una tarjeta USRP B210 para aplicaciones SDRadar. MASKAY (2017). https://doi.org/10.24133/maskay.v7i1.338
Iakushkin, O., Selivanov, D., Tazieva, L., Fatkina, A., Grishkin, V., Uteshev, A.: 3D reconstruction of landscape models and archaeological objects based on photo and video materials. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10963, pp. 160–169. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95171-3_14
Capece, N., Erra, U., Romaniello, G.: A low-cost full body tracking system in virtual reality based on microsoft kinect. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10851, pp. 623–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_44
Rosell-Polo, J.R., et al..: Kinect v2 sensor-based mobile terrestrial laser scanner for agricultural outdoor applications. IEEE/ASME Trans. Mechatron. (2017). https://doi.org/10.1109/TMECH.2017.2663436
Pritchard, M.E., Yun, S.-H.: Satellite radar imaging and its application to natural hazards. In: Natural Hazards (2018). https://doi.org/10.1201/9781315166841-5
Jordan, S., et al.: State-of-the-art technologies for UAV inspections, (2018). https://doi.org/10.1049/iet-rsn.2017.0251
Riaz, M., Bukhari, S.A., Mukhtar, F., Kamal, T., Sarwar, H., Tahir, M.U.: 3D mapping using light detection and ranging. In: Proceedings of 2017 International Multi-Topic Conference, INMIC 2017 (2018). https://doi.org/10.1109/INMIC.2017.8289468
Anwer, A., Ali, S.S.A., Meriaudeau, F.: Underwater online 3D mapping and scene reconstruction using low cost kinect RGB-D sensor. In: International Conference on Intelligent and Advanced Systems, ICIAS 2016 (2017). https://doi.org/10.1109/ICIAS.2016.7824132
Minda Gilces, D., Matamoros Torres, K.: A kinect-based gesture recognition approach for the design of an interactive tourism guide application. In: Communications in Computer and Information Science (2018)
Ishida, K.: Construction progress management and interior work analysis using kinect 3D image sensors. In: ISARC 2016 - 33rd International Symposium on Automation and Robotics in Construction (2016)
Barberán, J., et al.: Radar system for the reconstruction of 3D objects: a preliminary study. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S., Orovic, I., Moreira, F. (eds.) WorldCIST 2020. AISC, vol. 1160, pp. 238–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45691-7_23
Acknowledgments
A special thanks to the Universidad Tecnológica Indoamérica for supporting the development of this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Buele, J., Varela-Aldás, J., Castellanos, E.X., Jadán-Guerrero, J., Barberán, J. (2020). 3D Object Reconstruction Using Concatenated Matrices with MS Kinect: A Contribution to Interiors Architecture. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12254. Springer, Cham. https://doi.org/10.1007/978-3-030-58817-5_49
Download citation
DOI: https://doi.org/10.1007/978-3-030-58817-5_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58816-8
Online ISBN: 978-3-030-58817-5
eBook Packages: Computer ScienceComputer Science (R0)