Skip to main content

On the Effectiveness of Using Various Machine Learning Methods for Forecasting Dangerous Convective Phenomena

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

The paper considers the possibility of thunderstorm forecasting using only dynamical and microphysical parameters of the cloud, simulated by the 1.5D model with further processing by machine learning methods. The problem of feature selection is discussed in two aspects: selection of the optimal values of time and height when and where the output model data are fixed and selection of fixed set of the most representative cloud parameters (features) among all output cloud characteristics. Five machine learning methods are considered: Support Vector Machine (SVM), Logistic Regression, Ridge Regression, boosted k-nearest neighbour algorithm and neural networks. It is shown that forecast accuracy of all five methods reaches values exceeding 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Information on https://www-03.ibm.com/press/us/en/pressrelease/49954.wss

  2. Information on https://arnesund.com/2015/05/31/using-amazon-machine-learning-to-predict-the-weather/

  3. Information on https://yandex.ru/company/technologies/meteum/

  4. Stankova, E.N., Balakshiy, A.V., Petrov, D.A., Shorov, A.V., Korkhov, V.V.: Using technologies of OLAP and machine learning for validation of the numerical models of convective clouds. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 463–472. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42111-7_36

    Chapter  Google Scholar 

  5. Stankova, E.N., Balakshiy, A.V., Petrov, D.A., Korkhov, V.V.: OLAP technology and machine learning as the tools for validation of the numerical models of convective clouds. Int. J. Bus. Intell. Data Min. 14(1/2), 254–266 (2019)

    Google Scholar 

  6. Abramovich, K.G., et al.: Guide to forecasting meteorological conditions for aviation, Goskomgidromet, Moscow (1985). (in Russian)

    Google Scholar 

  7. Stankova, E.N., Grechko, I.A., Kachalkina, Y.N., Khvatkov, E.V.: Hybrid approach combining model-based method with the technology of machine learning for forecasting of dangerous weather phenomena. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 495–504. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_37

    Chapter  Google Scholar 

  8. Information on https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/KDD_2014_keynote_horvitz.pdf

  9. Baik, J.-J., Paek, J.-S.: A neural network model for predicting typhoon intensity. J. Meteorol. Soc. Jpn. 78, 857–869 (2000). https://doi.org/10.2151/jmsj1965.78.6_857

    Article  Google Scholar 

  10. Ruettgers, M., Lee, S., Jeon, S., You, D.: Prediction of a typhoon track using a generative adversarial network and satellite images. Sci. Rep. 9 (2019). Article number: 6057. https://doi.org/10.1038/s41598-019-42339-y

  11. Asai, T., Kasahara, A.: A theoretical study of the compensating downward motions associated with cumulus clouds. J. Atmos. Sci. 24, 487–497 (1967)

    Article  Google Scholar 

  12. Raba, N.O., Stankova, E.N.: Research of influence of compensating descending flow on cloud’s life cycle by means of 1.5-dimensional model with 2 cylinders. In: Proceedings of MGO, vol. 559, pp. 192–209 (2009). (in Russian)

    Google Scholar 

  13. Raba, N., Stankova, E.: On the possibilities of multi-core processor use for real-time forecast of dangerous convective phenomena. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6017, pp. 130–138. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12165-4_11

    Chapter  Google Scholar 

  14. Raba, N.O., Stankova, E.N.: On the problem of numerical modeling of dangerous convective phenomena: possibilities of real-time forecast with the help of multi-core processors. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6786, pp. 633–642. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21934-4_51

    Chapter  Google Scholar 

  15. Raba, N.O., Stankova, E.N.: On the effectiveness of using the GPU for numerical solution of stochastic collection equation. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7975, pp. 248–258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39640-3_18

    Chapter  Google Scholar 

  16. Petrov, D.A., Stankova, E.N.: Use of consolidation technology for meteorological data processing. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 440–451. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_30

    Chapter  Google Scholar 

  17. Petrov, D.A., Stankova, E.N.: Integrated information system for verification of the models of convective clouds. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9158, pp. 321–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21410-8_25

    Chapter  Google Scholar 

  18. Stankova, E.N., Petrov, D.A.: Complex information system for organization of the input data of models of convective clouds. Vestnik Saint-Petersburg Univ. Ser. 10, Appl. Math. Comput. Sci. Control Processes (3), 83–95 (2015). (in Russian)

    Google Scholar 

  19. Stankova, E.N., Ismailova, E.T., Grechko, I.A.: Algorithm for processing the results of cloud convection simulation using the methods of machine learning. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10963, pp. 149–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95171-3_13

    Chapter  Google Scholar 

  20. Stankova, E.N., Khvatkov, E.V.: Using boosted k-nearest neighbour algorithm for numerical forecasting of dangerous convective phenomena. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11622, pp. 802–811. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24305-0_61

    Chapter  Google Scholar 

  21. Information on http://scikit-learn.org/

  22. Dudarov, S.P., Diev, A.N., Fedosova, N.A., Koltsova, E.A.: Simulation of properties of composite materials reinforced by carbon nanotubes using perceptron complexes. Comput. Res. Model. 7(2), 253–262 (2017)

    Article  Google Scholar 

  23. Dudarov, S.P., Diev, A.N.: Neural network modeling based on perceptron complexes with small training data sets. Math. Methods Eng. Technol. 114–116 (2013)

    Google Scholar 

  24. Information on. https://keras.io/

  25. Korobkova, S.V.: Problems of the effective approximation of multidimensional functions using neural networks. Bull. South. Fed. Univ. Tech. Sci. 58(3), 121–127 (2006). (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Stankova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stankova, E.N., Tokareva, I.O., Dyachenko, N.V. (2020). On the Effectiveness of Using Various Machine Learning Methods for Forecasting Dangerous Convective Phenomena. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12254. Springer, Cham. https://doi.org/10.1007/978-3-030-58817-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58817-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58816-8

  • Online ISBN: 978-3-030-58817-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics