Skip to main content

Formamide Dehydration and Condensation on Acidic Montmorillonite: Mechanistic Insights from Ab-Initio Periodic Simulations

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Formamide (NH2CHO) is a molecule of extraordinary relevance as prebiotic precursor of many biological building blocks. Its dehydration reaction, which could take place during the Archean Era, leads to the production of HCN, the fundamental brick of DNA/RNA nitrogenous bases. Mineral surfaces could have played a crucial role in activating biological processes which in gas phase would have too high activation barriers to occur, thus allowing the event cascade, which finally led to the formation of biological macromolecules. In the present work we studied the dehydration process of formamide (NH2CHO → HCN + H2O) as catalyzed by a surface of acid montmorillonite. In this surface, a silicon atom has been substituted by an aluminium one, thus generating a negative charge that is compensated by an acidic proton on the top of the surface. This proton should, in principle, help the formamide dehydration. However, our results indicate that this particular acidic surface does not exert an efficient catalytic behavior in the decomposition of formamide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Patwardhan, S.V., Patwardhan, G., Perry, C.C.: Interactions of biomolecules with inorganic materials: principles, applications and future prospects. J. Mater. Chem. 17, 2875 (2007)

    Article  Google Scholar 

  2. Roco, M.C.: Nanotechnology: convergence with modern biology and medicine. Curr. Opin. Biotechnol. 14, 337–346 (2003)

    Article  Google Scholar 

  3. Ghadiri, M., Chrzanowski, W., Rohanizadeh, R.: Biomedical applications of cationic clay minerals. RSC Adv. 5, 29467–29481 (2015)

    Article  Google Scholar 

  4. Mahon, E., Salvati, A., Baldelli Bombelli, F., Lynch, I., Dawson, K.A.: Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J. Control. Release 161, 164–174 (2012)

    Article  Google Scholar 

  5. Tamerler, C., Sarikaya, M.: Molecular biomimetics: nanotechnology and bionanotechnology using genetically engineered peptides. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1705–1726 (2009)

    Google Scholar 

  6. Unuabonah, E.I., Günter, C., Weber, J., Lubahn, S., Taubert, A.: Hybrid clay: a new highly efficient adsorbent for water treatment. ACS Sustain. Chem. Eng. 1, 966–973 (2013)

    Article  Google Scholar 

  7. Liu, L., Yang, L.Q., Liang, H.W., Cong, H.P., Jiang, J., Yu, S.H.: Bio-inspired fabrication of hierarchical feooh nanostructure array films at the air-water interface, their hydrophobicity and application for water treatment. ACS Nano 7, 1368–1378 (2013)

    Article  Google Scholar 

  8. Bernal, J.D.: The physical basis of life. Proc. Phys. Soc. B. 62, 597–618 (1949)

    Article  Google Scholar 

  9. Saladino, R., Crestini, C., Ciciriello, F., Costanzo, G., Di Mauro, E.: Formamide chemistry and the origin of informational polymers. Chem. Biodivers. 4, 694–720 (2007)

    Article  Google Scholar 

  10. Orò, J.: Synthesis of adenine from ammonium cyanide. Biochem. Bioph. Res. Co. 2, 407–412 (1960)

    Article  Google Scholar 

  11. Orò, J.: Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 4794, 1193–1194 (1961). https://doi.org/10.1038/1911193a0

    Article  Google Scholar 

  12. Saladino, R., Crestini, C., Neri, V., Ciciriello, F., Costanzo, G., Di Mauro, E.: Origin of informational polymers: the concurrent roles of formamide and phosphates. ChemBioChem 7, 1707–1714 (2006)

    Article  Google Scholar 

  13. Saladino, R., Crestini, C., Pino, S., Costanzo, G., Di Mauro, E.: Formamide and the origin of life. Phys. Life Rev. 9, 84–104 (2012)

    Article  Google Scholar 

  14. Saladino, R., Crestini, C., Costanzo, G., Negri, R., Di Mauro, E.: A Possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-Pyrimidinone from formamide: implications for the origin of life. Bioorgan. Med. Chem. 9, 1249–1253 (2001)

    Article  Google Scholar 

  15. Saladino, R., Crestini, C., Di Mauro, E.: Advances in the prebiotic synthesis of nucleic acids bases: implications for the origin of life. Curr. Org. Chem. 8, 1425–1443 (2004)

    Article  Google Scholar 

  16. Costanzo, G., Saladino, R., Crestini, C., Ciciriello, F., Di Mauro, E.: Formamide as the main building block in the origin of nucleic acids. Evol. Bio. 7, S1 (2007)

    Google Scholar 

  17. Saladino, R., Crestini, C., Ciambecchini, U., Ciciriello, F., Costanzo, G., Di Mauro, E.: Synthesis and degradation of nucleobases and nucleic acids by formamide in the presence of montmorillonites. ChemBioChem 5, 1558–1566 (2004)

    Article  Google Scholar 

  18. Saladino, R., Botta, G., Delfino, M., Di Mauro, E.: Meteorites as catalysts for prebiotic chemistry. Chem. Eur. J. 19, 16916–16922 (2013)

    Article  Google Scholar 

  19. Saladino, R., Ciambecchini, U., Crestini, C., Costanzo, G., Negri, R., Di Mauro, E.: One-pot TiO2-catalyzed synthesis of nucleic bases and acyclonucleosides from formamide: implications for the origin of life. ChemBioChem 4, 514–521 (2003)

    Article  Google Scholar 

  20. Saladino, R., et al.: Synthesis and degradation of nucleic acid components by formamide and cosmic dust analogues. ChemBioChem 6, 1368–1374 (2005)

    Article  Google Scholar 

  21. Rotelli, L., et al.: The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Sci. Rep. 6, 38888 (2016)

    Article  Google Scholar 

  22. Ferris, J.P.: Mineral calalysis and prebiotic synthesis: montmorillonite-catalysed formation of RNA. Elements 1, 145–149 (2005)

    Article  Google Scholar 

  23. Wang, K.J., Ferris, J.P.: Catalysis and selectivity in prebiotic synthesis: Initiation of the formation of oligo(U)s on montmorillonite clay by adenosine-5′- methylphosphate. Orig. Life Evol. Biosph. 35, 187–212 (2005). https://doi.org/10.1007/s11084-005-0657-8

    Article  Google Scholar 

  24. Ferris, J.P.: Mineral catalysis and prebiotic synthesis : formation of RNA. Orig. Life 1, 145–150 (2005)

    Google Scholar 

  25. Huang, W., Ferris, J.P.: One-step, regioselective synthesis of up to 50-mers of RNA oligomers by montmorillonite catalysis. J. Am. Chem. Soc. 128, 8914–8919 (2006)

    Article  Google Scholar 

  26. Miyakawa, S., Ferris, J.P.: Sequence- and regioselectivity in the montmorillonite-catalyzed synthesis of RNA. J. Am. Chem. Soc. 125, 8202–8208 (2003)

    Article  Google Scholar 

  27. Ferris, J.P.: Sequence- and regio-selectivity in the montmorillonite-catalyzed synthesis of RNA. Orig. Life Evol. Biosph. 30, 411–422 (2000). https://doi.org/10.1023/A:1006767019897

  28. Mignon, P., Ugliengo, P., Sodupe, M.: Theoretical study of the adsorption of RNA/NA bases on the external surfaces of Na + -Montmorillonite. J. Phys. Chem. C 113, 13741–13749 (2009)

    Article  Google Scholar 

  29. Mignon, P., Sodupe, M.: Structural behaviors of cytosine into the hydrated interlayer of Na +-montmorillonite clay: an ab initio molecular dynamics study. J. Phys. Chem. C. 117, 26179–26189 (2013)

    Google Scholar 

  30. Mignon, P., Sodupe, M.: Theoretical study of the adsorption of DNA bases on the acidic external surface of montmorillonite. Phys. Chem. Chem. Phys. 14, 945–954 (2012)

    Article  Google Scholar 

  31. Pantaleone, S., Rimola, A., Sodupe, M.: Canonical, Deprotonated, or Zwitterionic? A computational study on amino acid interaction with the TiO2 (101) anatase surface. J. Phys. Chem. C. 121, 14156–14165 (2017)

    Google Scholar 

  32. Rimola, A., Costa, D., Sodupe, M., Lambert, J.-F., Ugliengo, P.: Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem. Rev. 113, 4216–4313 (2013)

    Article  Google Scholar 

  33. Pantaleone, S., Ugliengo, P., Sodupe, M., Rimola, A.: When the surface matters: prebiotic peptide-bond formation on the TiO2 (101) anatase surface through periodic DFT-D2 simulations. Chem. Eur. J. 24, 16292–16301 (2018)

    Article  Google Scholar 

  34. Rimola, A., Fabbiani, M., Sodupe, M., Ugliengo, P., Martra, G.: How does silica catalyze the amide bond formation under dry conditions? Role of specific surface silanol pairs. ACS Catal. 8, 4558–4568 (2018)

    Article  Google Scholar 

  35. Rimola, A., Tosoni, S., Sodupe, M., Ugliengo, P.: Does silica surface catalyse peptide bond formation? New insights from first-principles calculations. ChemPhysChem 7, 157–163 (2006)

    Article  Google Scholar 

  36. Rimola, A., Sodupe, M., Ugliengo, P.: Aluminosilicate surfaces as promoters for peptide bond formation: an assessment of Bernal’s hypothesis by ab initio methods. J. Am. Chem. Soc. 129, 8333–8344 (2007)

    Article  Google Scholar 

  37. Mignon, P., Navarro-Ruiz, J., Rimola, A., Sodupe, M.: Nucleobase stacking at clay edges, a favorable interaction for RNA/DNA oligomerization. ACS Earth Sp. Chem. 3, 1023–1033 (2019)

    Article  Google Scholar 

  38. Kresse, G., Hafner, J.: Ab initio molecular dynamcis for liquid metals. Phys. Rev. B. 47, 558 (1993)

    Article  Google Scholar 

  39. Kresse, G., Furthmüller, J., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B. 6, 558–561 (1996)

    Google Scholar 

  40. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B - Condens. Matter Mater. Phys. 54, 11169–11186 (1996)

    Google Scholar 

  41. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  42. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  43. Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    Article  Google Scholar 

  44. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented - wave method. Phys. Rev. B. 59, 1758–1775 (1999)

    Article  Google Scholar 

  45. Henkelman, G., Jónsson, H.: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999). https://doi.org/10.1063/1.480097

    Article  Google Scholar 

  46. Heyden, A., Bell, A.T., Keil, F.J.: Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 123, 224010 (2005). https://doi.org/10.1063/1.2104507

  47. Kästner, J., Sherwood, P.: Superlinearly converging dimer method for transition state search. J. Chem. Phys. 128, 014106 (2008). https://doi.org/10.1063/1.2815812

  48. Xiao, P., Sheppard, D., Rogal, J., Henkelman, G.: Solid-state dimer method for calculating solid-solid phase transitions. J. Chem. Phys. 140, 174104 (2014). https://doi.org/10.1063/1.4873437

  49. Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). https://doi.org/10.1063/1.1323224

    Article  Google Scholar 

  50. Henkelman, G., Uberuaga, B.P., Jónsson, H.: Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). https://doi.org/10.1063/1.1329672

    Article  Google Scholar 

  51. Sheppard, D., Terrell, R., Henkelman, G.: Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008). https://doi.org/10.1063/1.2841941

  52. Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D.D., Henkelman, G.: A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012). https://doi.org/10.1063/1.3684549

  53. Sheppard, D., Henkelman, G.: Paths to which the nudged elastic band converges. J. Comput. Chem. 32, 1769–1771 (2011). https://doi.org/10.1002/jcc

    Article  Google Scholar 

  54. Ugliengo, P., Viterbo, D., Chiari, G.: MOLDRAW: molecular graphics on a personal computer. Zeitschrift fur Krist. - New Cryst. Struct. 207, 9–23 (1993)

    Google Scholar 

  55. POV-Ray: The persistence of vision Raytracer. http://www.povray.org/

  56. Pantaleone, S., Salvini, C., Zamirri, L., Signorile, M., Bonino, F., Ugliengo, P.: A quantum mechanical study of dehydrationvs.decarbonylation of formamide catalysed by amorphous silica surfaces. Phys. Chem. Chem. Phys. 22, 8353–8363 (2020). https://doi.org/10.1039/d0cp00572j

  57. Kakumoto, T., Saito, K., Imamura, A.: Thermal decomposition of formamide: Shock tube experiments and ab initio calculations. J. Phys. Chem. 89, 2286–2291 (1985)

    Article  Google Scholar 

  58. Cataldo, F., Lilla, E., Ursini, O., Angelini, G.: TGA-FT-IR study of pyrolysis of poly(hydrogen cyanide) synthesized from thermal decomposition of formamide. Implications in cometary emissions. J. Anal. Appl. Pyrolysis. 87, 34–44 (2010)

    Google Scholar 

  59. Ferus, M., Kubelík, P., Civiš, S.: Laser spark formamide decomposition studied by FT-IR spectroscopy. J. Phys. Chem. A 115, 12132–12141 (2011)

    Article  Google Scholar 

  60. Ferus, M., Michalčíková, R., Shestivská, V., Šponer, J., Šponer, J.E., Civiš, S.: High-energy chemistry of formamide: a simpler way for nucleobase formation. J. Phys. Chem. A 118, 719–736 (2014)

    Article  Google Scholar 

  61. Ferus, M., et al.: High-energy chemistry of formamide: a unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. U.S.A. 112, 657–662 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Pantaleone .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2095 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pantaleone, S. et al. (2020). Formamide Dehydration and Condensation on Acidic Montmorillonite: Mechanistic Insights from Ab-Initio Periodic Simulations. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12255. Springer, Cham. https://doi.org/10.1007/978-3-030-58820-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58820-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58819-9

  • Online ISBN: 978-3-030-58820-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics