Abstract
Formamide (NH2CHO) is a molecule of extraordinary relevance as prebiotic precursor of many biological building blocks. Its dehydration reaction, which could take place during the Archean Era, leads to the production of HCN, the fundamental brick of DNA/RNA nitrogenous bases. Mineral surfaces could have played a crucial role in activating biological processes which in gas phase would have too high activation barriers to occur, thus allowing the event cascade, which finally led to the formation of biological macromolecules. In the present work we studied the dehydration process of formamide (NH2CHO → HCN + H2O) as catalyzed by a surface of acid montmorillonite. In this surface, a silicon atom has been substituted by an aluminium one, thus generating a negative charge that is compensated by an acidic proton on the top of the surface. This proton should, in principle, help the formamide dehydration. However, our results indicate that this particular acidic surface does not exert an efficient catalytic behavior in the decomposition of formamide.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Patwardhan, S.V., Patwardhan, G., Perry, C.C.: Interactions of biomolecules with inorganic materials: principles, applications and future prospects. J. Mater. Chem. 17, 2875 (2007)
Roco, M.C.: Nanotechnology: convergence with modern biology and medicine. Curr. Opin. Biotechnol. 14, 337–346 (2003)
Ghadiri, M., Chrzanowski, W., Rohanizadeh, R.: Biomedical applications of cationic clay minerals. RSC Adv. 5, 29467–29481 (2015)
Mahon, E., Salvati, A., Baldelli Bombelli, F., Lynch, I., Dawson, K.A.: Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J. Control. Release 161, 164–174 (2012)
Tamerler, C., Sarikaya, M.: Molecular biomimetics: nanotechnology and bionanotechnology using genetically engineered peptides. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1705–1726 (2009)
Unuabonah, E.I., Günter, C., Weber, J., Lubahn, S., Taubert, A.: Hybrid clay: a new highly efficient adsorbent for water treatment. ACS Sustain. Chem. Eng. 1, 966–973 (2013)
Liu, L., Yang, L.Q., Liang, H.W., Cong, H.P., Jiang, J., Yu, S.H.: Bio-inspired fabrication of hierarchical feooh nanostructure array films at the air-water interface, their hydrophobicity and application for water treatment. ACS Nano 7, 1368–1378 (2013)
Bernal, J.D.: The physical basis of life. Proc. Phys. Soc. B. 62, 597–618 (1949)
Saladino, R., Crestini, C., Ciciriello, F., Costanzo, G., Di Mauro, E.: Formamide chemistry and the origin of informational polymers. Chem. Biodivers. 4, 694–720 (2007)
Orò, J.: Synthesis of adenine from ammonium cyanide. Biochem. Bioph. Res. Co. 2, 407–412 (1960)
Orò, J.: Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 4794, 1193–1194 (1961). https://doi.org/10.1038/1911193a0
Saladino, R., Crestini, C., Neri, V., Ciciriello, F., Costanzo, G., Di Mauro, E.: Origin of informational polymers: the concurrent roles of formamide and phosphates. ChemBioChem 7, 1707–1714 (2006)
Saladino, R., Crestini, C., Pino, S., Costanzo, G., Di Mauro, E.: Formamide and the origin of life. Phys. Life Rev. 9, 84–104 (2012)
Saladino, R., Crestini, C., Costanzo, G., Negri, R., Di Mauro, E.: A Possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-Pyrimidinone from formamide: implications for the origin of life. Bioorgan. Med. Chem. 9, 1249–1253 (2001)
Saladino, R., Crestini, C., Di Mauro, E.: Advances in the prebiotic synthesis of nucleic acids bases: implications for the origin of life. Curr. Org. Chem. 8, 1425–1443 (2004)
Costanzo, G., Saladino, R., Crestini, C., Ciciriello, F., Di Mauro, E.: Formamide as the main building block in the origin of nucleic acids. Evol. Bio. 7, S1 (2007)
Saladino, R., Crestini, C., Ciambecchini, U., Ciciriello, F., Costanzo, G., Di Mauro, E.: Synthesis and degradation of nucleobases and nucleic acids by formamide in the presence of montmorillonites. ChemBioChem 5, 1558–1566 (2004)
Saladino, R., Botta, G., Delfino, M., Di Mauro, E.: Meteorites as catalysts for prebiotic chemistry. Chem. Eur. J. 19, 16916–16922 (2013)
Saladino, R., Ciambecchini, U., Crestini, C., Costanzo, G., Negri, R., Di Mauro, E.: One-pot TiO2-catalyzed synthesis of nucleic bases and acyclonucleosides from formamide: implications for the origin of life. ChemBioChem 4, 514–521 (2003)
Saladino, R., et al.: Synthesis and degradation of nucleic acid components by formamide and cosmic dust analogues. ChemBioChem 6, 1368–1374 (2005)
Rotelli, L., et al.: The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Sci. Rep. 6, 38888 (2016)
Ferris, J.P.: Mineral calalysis and prebiotic synthesis: montmorillonite-catalysed formation of RNA. Elements 1, 145–149 (2005)
Wang, K.J., Ferris, J.P.: Catalysis and selectivity in prebiotic synthesis: Initiation of the formation of oligo(U)s on montmorillonite clay by adenosine-5′- methylphosphate. Orig. Life Evol. Biosph. 35, 187–212 (2005). https://doi.org/10.1007/s11084-005-0657-8
Ferris, J.P.: Mineral catalysis and prebiotic synthesis : formation of RNA. Orig. Life 1, 145–150 (2005)
Huang, W., Ferris, J.P.: One-step, regioselective synthesis of up to 50-mers of RNA oligomers by montmorillonite catalysis. J. Am. Chem. Soc. 128, 8914–8919 (2006)
Miyakawa, S., Ferris, J.P.: Sequence- and regioselectivity in the montmorillonite-catalyzed synthesis of RNA. J. Am. Chem. Soc. 125, 8202–8208 (2003)
Ferris, J.P.: Sequence- and regio-selectivity in the montmorillonite-catalyzed synthesis of RNA. Orig. Life Evol. Biosph. 30, 411–422 (2000). https://doi.org/10.1023/A:1006767019897
Mignon, P., Ugliengo, P., Sodupe, M.: Theoretical study of the adsorption of RNA/NA bases on the external surfaces of Na + -Montmorillonite. J. Phys. Chem. C 113, 13741–13749 (2009)
Mignon, P., Sodupe, M.: Structural behaviors of cytosine into the hydrated interlayer of Na +-montmorillonite clay: an ab initio molecular dynamics study. J. Phys. Chem. C. 117, 26179–26189 (2013)
Mignon, P., Sodupe, M.: Theoretical study of the adsorption of DNA bases on the acidic external surface of montmorillonite. Phys. Chem. Chem. Phys. 14, 945–954 (2012)
Pantaleone, S., Rimola, A., Sodupe, M.: Canonical, Deprotonated, or Zwitterionic? A computational study on amino acid interaction with the TiO2 (101) anatase surface. J. Phys. Chem. C. 121, 14156–14165 (2017)
Rimola, A., Costa, D., Sodupe, M., Lambert, J.-F., Ugliengo, P.: Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem. Rev. 113, 4216–4313 (2013)
Pantaleone, S., Ugliengo, P., Sodupe, M., Rimola, A.: When the surface matters: prebiotic peptide-bond formation on the TiO2 (101) anatase surface through periodic DFT-D2 simulations. Chem. Eur. J. 24, 16292–16301 (2018)
Rimola, A., Fabbiani, M., Sodupe, M., Ugliengo, P., Martra, G.: How does silica catalyze the amide bond formation under dry conditions? Role of specific surface silanol pairs. ACS Catal. 8, 4558–4568 (2018)
Rimola, A., Tosoni, S., Sodupe, M., Ugliengo, P.: Does silica surface catalyse peptide bond formation? New insights from first-principles calculations. ChemPhysChem 7, 157–163 (2006)
Rimola, A., Sodupe, M., Ugliengo, P.: Aluminosilicate surfaces as promoters for peptide bond formation: an assessment of Bernal’s hypothesis by ab initio methods. J. Am. Chem. Soc. 129, 8333–8344 (2007)
Mignon, P., Navarro-Ruiz, J., Rimola, A., Sodupe, M.: Nucleobase stacking at clay edges, a favorable interaction for RNA/DNA oligomerization. ACS Earth Sp. Chem. 3, 1023–1033 (2019)
Kresse, G., Hafner, J.: Ab initio molecular dynamcis for liquid metals. Phys. Rev. B. 47, 558 (1993)
Kresse, G., Furthmüller, J., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B. 6, 558–561 (1996)
Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B - Condens. Matter Mater. Phys. 54, 11169–11186 (1996)
Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)
Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)
Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)
Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented - wave method. Phys. Rev. B. 59, 1758–1775 (1999)
Henkelman, G., Jónsson, H.: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999). https://doi.org/10.1063/1.480097
Heyden, A., Bell, A.T., Keil, F.J.: Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 123, 224010 (2005). https://doi.org/10.1063/1.2104507
Kästner, J., Sherwood, P.: Superlinearly converging dimer method for transition state search. J. Chem. Phys. 128, 014106 (2008). https://doi.org/10.1063/1.2815812
Xiao, P., Sheppard, D., Rogal, J., Henkelman, G.: Solid-state dimer method for calculating solid-solid phase transitions. J. Chem. Phys. 140, 174104 (2014). https://doi.org/10.1063/1.4873437
Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). https://doi.org/10.1063/1.1323224
Henkelman, G., Uberuaga, B.P., Jónsson, H.: Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). https://doi.org/10.1063/1.1329672
Sheppard, D., Terrell, R., Henkelman, G.: Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008). https://doi.org/10.1063/1.2841941
Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D.D., Henkelman, G.: A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012). https://doi.org/10.1063/1.3684549
Sheppard, D., Henkelman, G.: Paths to which the nudged elastic band converges. J. Comput. Chem. 32, 1769–1771 (2011). https://doi.org/10.1002/jcc
Ugliengo, P., Viterbo, D., Chiari, G.: MOLDRAW: molecular graphics on a personal computer. Zeitschrift fur Krist. - New Cryst. Struct. 207, 9–23 (1993)
POV-Ray: The persistence of vision Raytracer. http://www.povray.org/
Pantaleone, S., Salvini, C., Zamirri, L., Signorile, M., Bonino, F., Ugliengo, P.: A quantum mechanical study of dehydrationvs.decarbonylation of formamide catalysed by amorphous silica surfaces. Phys. Chem. Chem. Phys. 22, 8353–8363 (2020). https://doi.org/10.1039/d0cp00572j
Kakumoto, T., Saito, K., Imamura, A.: Thermal decomposition of formamide: Shock tube experiments and ab initio calculations. J. Phys. Chem. 89, 2286–2291 (1985)
Cataldo, F., Lilla, E., Ursini, O., Angelini, G.: TGA-FT-IR study of pyrolysis of poly(hydrogen cyanide) synthesized from thermal decomposition of formamide. Implications in cometary emissions. J. Anal. Appl. Pyrolysis. 87, 34–44 (2010)
Ferus, M., Kubelík, P., Civiš, S.: Laser spark formamide decomposition studied by FT-IR spectroscopy. J. Phys. Chem. A 115, 12132–12141 (2011)
Ferus, M., Michalčíková, R., Shestivská, V., Šponer, J., Šponer, J.E., Civiš, S.: High-energy chemistry of formamide: a simpler way for nucleobase formation. J. Phys. Chem. A 118, 719–736 (2014)
Ferus, M., et al.: High-energy chemistry of formamide: a unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. U.S.A. 112, 657–662 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Pantaleone, S. et al. (2020). Formamide Dehydration and Condensation on Acidic Montmorillonite: Mechanistic Insights from Ab-Initio Periodic Simulations. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12255. Springer, Cham. https://doi.org/10.1007/978-3-030-58820-5_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-58820-5_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58819-9
Online ISBN: 978-3-030-58820-5
eBook Packages: Computer ScienceComputer Science (R0)