Skip to main content

Minimal Perturbation in University Timetabling with Maximum Satisfiability

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2020)

Abstract

Every new academic year, scheduling new timetables due to disruptions is a major problem for universities. However, computing a new timetable from scratch may be unnecessarily expensive. Furthermore, this process may produce a significantly different timetable which in many cases is undesirable for all parties involved. For this reason, we aim to find a new feasible timetable while minimizing the number of perturbations relative to the original disrupted timetable.

The contribution of this paper is a maximum satisfiability (MaxSAT) encoding to solve large and complex university timetabling problem instances which can be subject to disruptions. To validate the MaxSAT encoding, we evaluate university timetabling real-world instances from the International Timetabling Competition (ITC) 2019. We consider the originally found solutions as a starting point, to evaluate the capacity of the proposed MaxSAT encoding to find a new solution with minimal perturbation. Overall, our model is able to efficiently solve the disrupted instances.

The authors would like to thank the reviewers for their helpful comments and suggestions that contributed to an improved manuscript. This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference SFRH/BD/143212/2019 (PhD grant), DSAIPA/AI/0033/2019 (project LAIfeBlood) and UIDB/50021/2020 (INESC-ID multi-annual funding).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.itc2019.org/validator.

  2. 2.

    TT-Open-WBO-Inc won the Weighted Incomplete category at MaxSAT Evaluation 2019. The results are available at https://maxsat-evaluations.github.io/2019.

  3. 3.

    We use the RAPIDXML parser which is available at rapidxml.sourceforge.net/.

References

  1. McCollum, B.: University timetabling: bridging the gap between research and practice. In: 5th International Conference on the Practice and Theory of Automated Timetabling (PATAT), pp. 15–35(2006)

    Google Scholar 

  2. Oude Vrielink, R.A., Jansen, E.A., Hans, E.W., van Hillegersberg, J.: Practices in timetabling in higher education institutions: a systematic review. Ann. Oper. Res. 275(1), 145–160 (2017). https://doi.org/10.1007/s10479-017-2688-8

    Article  MathSciNet  MATH  Google Scholar 

  3. Müller, T., Rudová, H., Müllerová, Z.: University course timetabling and international timetabling competition 2019. In: Proceedings of 12th International Conference on the Practice and Theory of Automated Timetabling (PATAT), p. 27 (2018)

    Google Scholar 

  4. Müller, T.: ITC-2007 solver description: a hybrid approach. Ann. Oper. Res. 172(1), 429 (2009). https://doi.org/10.1007/s10479-009-0644-y

    Article  MATH  Google Scholar 

  5. Di Gaspero, L., Schaerf, A., McCollum, B.: The second international timetabling competition (ITC-2007): Curriculum-based course timetabling (track 3). Technical report, Queen’s University (2007)

    Google Scholar 

  6. Laporte, G., Desroches, S.: The problem of assigning students to course sections in a large engineering school. Comput. Oper. Res. 13(4), 387–394 (1986)

    Article  Google Scholar 

  7. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. Soc. Ind. Appl. Math. J. Comput. 5(4), 691–703 (1976). https://doi.org/10.1137/0205048

    Article  MathSciNet  MATH  Google Scholar 

  8. Müller, T., Rudová, H., Barták, R.: Minimal perturbation problem in course timetabling. In: Burke, E., Trick, M. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 126–146. Springer, Heidelberg (2005). https://doi.org/10.1007/11593577_8

    Chapter  Google Scholar 

  9. Atsuta, M., Nonobe, K., Ibaraki, T.: ITC-2007 track 2: an approach using a general CSP solver. In: 7th International Conference on the Practice and Theory of Automated Timetabling (PATAT), pp. 19–22 (2008)

    Google Scholar 

  10. Banbara, M., et al.: \(teaspoo{n:}\) solving the curriculum-based course timetabling problems with answer set programming. Ann. Oper. Res. 275(1), 3–37 (2019). https://doi.org/10.1007/s10479-018-2757-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Bittner, P.M., Thüm, T., Schaefer, I.: SAT encodings of the At-Most-k constraint- a case study on configuring university courses. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. Lecture Notes in Computer Science, vol. 11724, pp. 127–144. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30446-1_7

    Chapter  Google Scholar 

  12. Asín Achá, R., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and MaxSAT. Ann. Oper. Res. 218(1), 71–91 (2012). https://doi.org/10.1007/s10479-012-1081-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Lemos, A., Melo, F.S., Monteiro, P.T., Lynce, I.: Room usage optimization in timetabling: a case study at Universidade de Lisboa. Oper. Res. Perspect. 6, 100092 (2019). https://doi.org/10.1016/j.orp.2018.100092

    Article  MathSciNet  Google Scholar 

  14. Lindahl, M., Stidsen, T., Sørensen, M.: Quality recovering of university timetables. Eur. J. Oper. Res. 276(2), 422–435 (2019)

    Article  MathSciNet  Google Scholar 

  15. Phillips, A.E., Walker, C.G., Ehrgott, M., Ryan, D.M.: Integer programming for minimal perturbation problems in university course timetabling. Ann. Oper. Res. 252(2), 283–304 (2016). https://doi.org/10.1007/s10479-015-2094-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Gülcü, A., Akkan, C.: Robust university course timetabling problem subject to single and multiple disruptions. Eur. J. Oper. Res. 283(2), 630–646 (2020)

    Article  MathSciNet  Google Scholar 

  17. Zivan, R., Grubshtein, A., Meisels, A.: Hybrid search for minimal perturbation in dynamic CSPs. Constraints 16(3), 228–249 (2011). https://doi.org/10.1007/s10601-011-9108-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar solutions in constraint programming. In: 20th National Conference on Artificial Intelligence and 17th Innovative Applications of Artificial Intelligence, pp. 372–377 (2005)

    Google Scholar 

  19. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950). https://doi.org/10.1002/j.1538-7305.1950.tb00463.x

    Article  MathSciNet  MATH  Google Scholar 

  20. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS Press, Amsterdam (2009)

    MATH  Google Scholar 

  21. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. J. Satisf. Boolean Model. Comput. 2(1–4), 1–26 (2006)

    MATH  Google Scholar 

  22. Carter, M.W.: A comprehensive course timetabling and student scheduling system at the University of Waterloo. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 64–82. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44629-X_5

    Chapter  Google Scholar 

  23. Schindl, D.: Optimal student sectioning on mandatory courses with various sections numbers. Ann. Oper. Res. 275(1), 209–221 (2017). https://doi.org/10.1007/s10479-017-2621-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Roussel, O.: Controlling a solver execution with the runsolver tool. J. Satisf. Boolean Model. Comput. 7(4), 139–144 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Nadel, A.: Anytime weighted MaxSAT with improved polarity selection and bit-vector optimization. In: Proceedings of the 19th Conference on Formal Methods in Computer Aided Design (FMCAD) (2019)

    Google Scholar 

  26. Nadel, A.: TT-Open-WBO-Inc: tuning polarity and variable selection for anytime SAT-based optimization. In: Proceedings of the MaxSAT Evaluations (2019)

    Google Scholar 

  27. Joshi, S., Kumar, P., Martins, R., Rao, S.: Approximation strategies for incomplete MaxSAT. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 219–228. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_15

    Chapter  Google Scholar 

  28. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization: algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343 (2011). https://doi.org/10.1007/s10472-011-9233-2

    Article  MathSciNet  MATH  Google Scholar 

  29. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables into problems with Boolean variables. In: Proceedings of the Seventh International Conference on Theory and Applications of Satisfiability Testing (SAT), vol. 3542, pp. 1–15 (2004)

    Google Scholar 

  30. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form. Inf. Process. Lett. 68(2), 63–69 (1998)

    Article  MathSciNet  Google Scholar 

  31. Fylstra, D.H., Lasdon, L.S., Watson, J., Waren, A.D.: Design and use of the microsoft excel solver. Interfaces 28(5), 29–55 (1998). https://doi.org/10.1287/inte.28.5.29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Lemos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lemos, A., Monteiro, P.T., Lynce, I. (2020). Minimal Perturbation in University Timetabling with Maximum Satisfiability. In: Hebrard, E., Musliu, N. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2020. Lecture Notes in Computer Science(), vol 12296. Springer, Cham. https://doi.org/10.1007/978-3-030-58942-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58942-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58941-7

  • Online ISBN: 978-3-030-58942-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics