Skip to main content

Multi-speed Gearbox Synthesis Using Global Search and Non-convex Optimization

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2020)

Abstract

We consider the synthesis problem of a multi-speed gearbox, a mechanical system that receives an input speed and transmits it to an outlet through a series of connected gears, decreasing or increasing the speed according to predetermined transmission ratios. Here we formulate this as a bi-level optimization problem, where the inner problem involves non-convex optimization over continuous parameters of the components, and the outer task explores different configurations of the system. The outer problem is decomposed into sub-tasks and optimized by a variety of global search methods, namely simulated annealing, best-first search and estimation of distribution algorithm. Our experiments show that a three-stage decomposition coupled with a best-first search performs well on small-size problems, and it outmatches other techniques on larger problems when coupled with an estimation of distribution algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Math. Program. Comput. 11(1), 1–36 (2019). https://doi.org/10.1007/s12532-018-0139-4

    Article  MathSciNet  MATH  Google Scholar 

  2. Berx, K., Gadeyne, K., Dhadamus, M., Pipeleers, G., Pinte, G.: Model-based gearbox synthesis. In: Mechatronics Forum International Conference, pp. 599–605 (2014)

    Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  4. Buiga, O., Tudose, L.: Optimal mass minimization design of a two-stage coaxial helical speed reducer with genetic algorithms. Adv. Eng. Softw. 68, 25–32 (2014)

    Article  Google Scholar 

  5. Castro, M.P., Piacentini, C., Cire, A.A., Beck, J.C.: Relaxed decision diagrams for cost-optimal classical planning. In: Workshop HSDIP, ICAPS, pp. 50–58 (2018)

    Google Scholar 

  6. Chakrabarti, A., et al.: Computer-based design synthesis research: an overview. J. Comput. Inf. Sci. Eng. 11(2), 021003 (2011)

    Article  Google Scholar 

  7. Cheong, H., Ebrahimi, M., Butscher, A., Iorio, F.: Configuration design of mechanical assemblies using an estimation of distribution algorithm and constraint programming. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 2339–2346. IEEE (2019)

    Google Scholar 

  8. Chlamtáč, E., Dinitz, M., Makarychev, Y.: Minimizing the union: tight approximations for small set bipartite vertex expansion. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 881–899. SIAM (2017)

    Google Scholar 

  9. Chomsky, N., Lightfoot, D.W.: Syntactic structures. Walter de Gruyter (1957)

    Google Scholar 

  10. Chong, T.H., Bae, I., Kubo, A.: Multiobjective optimal design of cylindrical gear pairs for the reduction of gear size and meshing vibration. JSME Int J., Ser. C 44(1), 291–298 (2001)

    Article  Google Scholar 

  11. Deb, K., Jain, S.: Multi-speed gearbox design using multi-objective evolutionary algorithms. J. Mech. Des. 125(3), 609–619 (2003)

    Article  Google Scholar 

  12. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality of A. J. ACM (JACM) 32(3), 505–536 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eschenauer, H., Koski, J., Osyczka, A.: Multicriteria Design Optimization: Procedures and Applications. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  14. Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribution algorithms. Swarm Evol. Comput. 1(3), 111–128 (2011)

    Article  Google Scholar 

  15. Huang, H.Z., Tian, Z.G., Zuo, M.J.: Multiobjective optimization of three-stage spur gear reduction units using interactive physical programming. J. Mech. Sci. Technol. 19(5), 1080–1086 (2005)

    Article  Google Scholar 

  16. Hwang, C.R.: Simulated annealing: theory and applications. Acta Applicandae Mathematicae 12(1), 108–111 (1988)

    MathSciNet  Google Scholar 

  17. Jain, P., Agogino, A.M.: Theory of design: an optimization perspective. Mech. Mach. Theory 25(3), 287–303 (1990)

    Article  Google Scholar 

  18. Königseder, C., Shea, K.: Comparing strategies for topologic and parametric rule application in automated computational design synthesis. J. Mech. Des. 138(1), 011102 (2016)

    Article  Google Scholar 

  19. Land, A., Doig, A.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, X., Schmidt, L.: Grammar-based designer assistance tool for epicyclic gear trains. J. Mech. Des. 126(5), 895–902 (2004)

    Article  Google Scholar 

  21. Lin, Y.S., Shea, K., Johnson, A., Coultate, J., Pears, J.: A method and software tool for automated gearbox synthesis. In: ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 111–121. American Society of Mechanical Engineers Digital Collection (2009)

    Google Scholar 

  22. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mittal, S., Frayman, F.: Towards a generic model of configuraton tasks. In: IJCAI, vol. 89, pp. 1395–1401. Citeseer (1989)

    Google Scholar 

  24. Mullins, S., Rinderle, J.R.: Grammatical approaches to engineering design, part i: an introduction and commentary. Res. Eng. Design 2(3), 121–135 (1991)

    Article  Google Scholar 

  25. Murthy, S.S., Addanki, S.: PROMPT: an innovative design tool. IBM Thomas J, Watson Research Division (1987)

    Google Scholar 

  26. Nadel, B.A., Lin, J.: Automobile transmission design as a constraint satisfaction problem: modelling the kinematic level. AI EDAM 5(3), 137–171 (1991)

    Google Scholar 

  27. Osyczka, A.: An approach to multicriterion optimization problems for engineering design. Comput. Methods Appl. Mech. Eng. 15(3), 309–333 (1978)

    Article  MATH  Google Scholar 

  28. Pomrehn, L., Papalambros, P.: Discrete optimal design formulations with application to gear train design. J. Mech. Des. 117(3), 419–424 (1995)

    Article  Google Scholar 

  29. Prayoonrat, S., Walton, D.: Practical approach to optimum gear train design. Comput. Aided Des. 20(2), 83–92 (1988)

    Article  Google Scholar 

  30. Rai, P., Agrawal, A., Saini, M.L., Jodder, C., Barman, A.G.: Volume optimization of helical gear with profile shift using real coded genetic algorithm. Procedia Comput. Sci. 133, 718–724 (2018)

    Article  Google Scholar 

  31. Savsani, V., Rao, R., Vakharia, D.: Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms. Mech. Mach. Theory 45(3), 531–541 (2010)

    Article  MATH  Google Scholar 

  32. Schmidt, L.C., Shetty, H., Chase, S.C.: A graph grammar approach for structure synthesis of mechanisms. J. Mech. Des. 122(4), 371–376 (1999)

    Article  Google Scholar 

  33. Sobieszczanski-Sobieski, J., Haftka, R.T.: Multidisciplinary aerospace design optimization: survey of recent developments. Struct. Optim. 14(1), 1–23 (1997)

    Article  Google Scholar 

  34. Swantner, A., Campbell, M.I.: Topological and parametric optimization of gear trains. Eng. Optim. 44(11), 1351–1368 (2012)

    Article  Google Scholar 

  35. TREMEC: Tremec. http://www.tremec.com. Accessed 28 Nov 2019

  36. Tsai, L.W., Maki, E., Liu, T., Kapil, N.: The categorization of planetary gear trains for automatic transmissions according to kinematic topology. Technical report, SAE Technical Paper (1988)

    Google Scholar 

  37. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vinterbo, S.A.: A note on the hardness of the k-ambiguity problem. Technical Report DSG-T R-2002-006 (2002)

    Google Scholar 

  39. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 129(4), 370–380 (2006)

    Article  Google Scholar 

  41. Wang, H., Wang, H.P.: Optimal engineering design of spur gear sets. Mech. Mach. Theory 29(7), 1071–1080 (1994)

    Article  Google Scholar 

  42. Wojnarowski, J., Kopeć, J., Zawiślak, S.: Gears and graphs. J. Theor. Appl. Mech. 44(1), 139–162 (2006)

    Google Scholar 

  43. Yokota, T., Taguchi, T., Gen, M.: A solution method for optimal weight design problem of the gear using genetic algorithms. Comput. Ind. Eng. 35(3–4), 523–526 (1998)

    Article  Google Scholar 

  44. Zarefar, H., Muthukrishnan, S.: Computer-aided optimal design via modified adaptive random-search algorithm. Comput. Aided Des. 25(4), 240–248 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chiara Piacentini or Hyunmin Cheong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Piacentini, C., Cheong, H., Ebrahimi, M., Butscher, A. (2020). Multi-speed Gearbox Synthesis Using Global Search and Non-convex Optimization. In: Hebrard, E., Musliu, N. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2020. Lecture Notes in Computer Science(), vol 12296. Springer, Cham. https://doi.org/10.1007/978-3-030-58942-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58942-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58941-7

  • Online ISBN: 978-3-030-58942-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics