Skip to main content

Symbol Error Probability of Secondary User in Underlay Cognitive Radio Networks with Adaptive Transmit Power Constraint

  • Conference paper
  • First Online:
Multimedia Communications, Services and Security (MCSS 2020)

Abstract

The objective of this paper is to study the performance of a cognitive radio network (CRN) under the influence of an eavesdropper (EAV) which can wiretap the primary user (PU) communication. In this CRN, the secondary transmitter (SU)’s transmit power is susceptible to the collaborative constraint of its peak transmit power. Consequently, the author groups derive an adaptive transmit power policy and analytical expression of symbol error probability for the SU. From the numerical results that were obtained, it can be concluded that as the SU presents in the CRN, the primary network security is enhanced. Readers as operators or system designers may find this paper useful as it provides information about the cooperation of the PU and SU in a spectrum sharing CRN to prevent security attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suriano, F., De Rango, F., Popovski, P. Opportunistic interference cancellation evaluation in cognitive radios under power control strategies. In: 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 609–614 (2013)

    Google Scholar 

  2. Zou, Y., Yao, Y., Zheng, B.: Cooperative relay techniques for cognitive radio systems: spectrum sensing and secondary user transmission. IEEE Commun. Magazine 50(4), 98–103 (2012)

    Article  Google Scholar 

  3. Mitola, J., Maguire, G.Q.: Cognitive radio: making software radios more personal. IEEE Personal Commun. 6(4), 13–18 (1999)

    Article  Google Scholar 

  4. Yang, Y., Zhang, Q., Wang, Y., Emoto, T., Akutagawa, M., Konaka, S.: Multi-strategy dynamic spectrum access in cognitive radio networks: modeling, analysis and optimization. China Commun. 16(3), 103–121 (2019)

    Google Scholar 

  5. Huynh, V.-V., Nguyen, H.-S., Hoc, L.T.T., Nguyen, T.S., Voznak, M.: Optimization issues for data rate in energy harvesting relay-enabled cognitive sensor networks. Comput. Netw. 157(5), 29–40 (2019)

    Article  Google Scholar 

  6. Huynh, V.-V., Tan-Loc, N., Quoc-Phu, M., Sevcik, L., Nguyen, H.-S., Voznak, M.: Energy efficiency maximization of two-time-slot and three-time-slot two-way relay-assisted device-to-device underlaying cellular networks. Energies 13, 3422 (2020)

    Article  Google Scholar 

  7. Andreotti, R., Wang, T., Lottici, V., Giannetti, L.F., Vandendorpe, L.: Resource allocation via max-min goodput optimization for BIC-OFDMA systems. IEEE Trans. Commun. 64(6), 2412–2426 (2016)

    Article  Google Scholar 

  8. Nguyen, H.S., Nguyen, T.S., Voznak, M.: Wireless powered D2D communications underlying cellular networks: design and performance of the extended coverage. Automatika 58(4), 391–399 (2018)

    Article  Google Scholar 

  9. Zhang, R.: On peak versus average interference power constraints for protecting primary users in cognitive radio networks. IEEE Trans. Wireless Commun. 8(4), 2112–2120 (2009)

    Article  Google Scholar 

  10. Smith, P.J., Dmochowski, P.A., Suraweera, H.A., Shafi, M.: The effects of limited channel knowledge on cognitive radio system capacity. IEEE Trans. Vehicular Technol. 62(2), 927–933 (2013)

    Article  Google Scholar 

  11. Zhou, F., Beaulieu, N.C., Li, Z., Si, J., Qi, P.: Energy-efficient optimal power allocation for fading cognitive radio channels: ergodic capacity, outage capacity, and minimum-rate capacity. IEEE Trans. Wireless Commun. 15(4), 2741–2755 (2016)

    Google Scholar 

  12. Nguyen, H.-S., Nguyen, T.-S., Nguyen, M.-T., Voznak, M.: Optimal time switching-based policies for efficient transmit power in wireless energy harvesting small cell cognitive relaying networks. Wireless Personal Commun. 99(4), 1605–1624 (2018). https://doi.org/10.1007/s11277-018-5296-2

  13. Nguyen, T.N., Minh, T.H.Q., Tran, P.T., Voznak, M.: Adaptive energy harvesting relaying protocol for two-way half-duplex system network over rician fading channels. Wireless Communications and Mobile Computing, 2018, art. no. 7693016 (2018)

    Google Scholar 

  14. Rodriguez, L.J., Tran, N.H., Duong, T.Q., Le, N.T., Elkashlan, M., Shetty, S.: Physical layer security in wireless cooperative relay networks: state of the art and beyond. IEEE Commun. Magazine 53(12), 32–39 (2015)

    Article  Google Scholar 

  15. De Rango, F., Potrino, G., Tropea, M., Fazio, P.: Energy-aware dynamic internet of things security system based on elliptic curve cryptography and message queue telemetry transport protocol for mitigating replay attacks. Pervasive Mob. Comput. 61, 101105 (2020)

    Article  Google Scholar 

  16. Poor, H.V.: Information and inference in the wireless physical layer. IEEE Commun. Magazine 19(1), 40–47 (2012)

    Article  Google Scholar 

  17. Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., Di Renzo, M.: Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Magazine 53(4), 20–27 (2015)

    Article  Google Scholar 

  18. Dai, B., Yu, L., Luo, Y.: New results on the wire-tap channel with noiseless feedback. In: IEEE Information Theory Workshop (ITW), pp. 1–5, Guangzhou (2018)

    Google Scholar 

  19. Fazio, P., Tropea, M., Marano, S., Voznak, M.: Meaningful attack graph reconstruction through stochastic marking analysis. In: Proceedings of the 2016 International Symposium on Performance Evaluation of Computer and Telecommunication Systems, SPECTS 2016 - Part of SummerSim 2016 Multi conference, art. no. 7570519 (2016)

    Google Scholar 

  20. Nguyen, T.N., et al.: Performance enhancement for energy harvesting based two-way relay protocols in wireless ad-hoc networks with partial and full relay selection methods. Ad Hoc Netw. 84, 178–187 (2019)

    Article  Google Scholar 

  21. Forssell, H., Thobaben, R., Al-Zubaidy, H., Gross, J.: Physical layer authentication in mission-critical MTC networks: a security and delay performance analysis. IEEE J. Selected Areas Commun. 37(4), 795–808 (2019)

    Article  Google Scholar 

  22. Liu, X.: Outage probability of secrecy capacity over correlated log-normal fading channels. IEEE Commun. Lett. 17(2), 289–292 (2013)

    Article  Google Scholar 

  23. Karmakar, S., Ghosh, A.: Secrecy capacity region of fading binary Z interference channel with statistical CSIT. IEEE Trans. Inf. Forensics Secur. 14(4), 848–857 (2019)

    Article  Google Scholar 

  24. Tran, H., Kaddoum, G., Gagnon, F.: Cognitive radio network with secrecy and interference constraints. Phys. Commun. 22, 32–41 (2017)

    Article  Google Scholar 

  25. Bouabdellah, M., Kaabouch, N., Bouanani, F.E., Ben-Azza, H.: Network layer attacks and countermeasures in cognitive radio networks: a survey. J. Inf. Secur. Appl. 38, 40–49 (2018)

    Google Scholar 

  26. Al-Talabani, A., Deng, Y., Nallanathan, A., Nguyen, H.X.: Enhancing secrecy rate in cognitive radio networks via stackelberg game. IEEE Trans. Commun. 64(11), 4764–4775 (2016)

    Article  Google Scholar 

  27. Quach, T.X., Tran, H., Uhlemann, E., Truc, M.T.: Secrecy performance of cooperative cognitive radio networks under joint secrecy outage and primary user interference constraints. IEEE Access 8, 18442–18455 (2020)

    Article  Google Scholar 

  28. Huynh, V.-V., et al.: Optimization issues for data rate in energy harvesting relay-enabled cognitive sensor networks. Comput. Netw. 157, 29–40 (2019)

    Article  Google Scholar 

  29. Nguyen, H.-S., et al.: Wireless powered D2D communications underlying cellular networks: design and performance of the extended coverage. Automatika 58, 391–0399 (2018)

    Article  Google Scholar 

  30. Nguyen, H.-S., et al.: Outage performance analysis and SWIPT optimization in energy-harvesting wireless sensor network deploying NOMA. Sensors 19, 613 (2019)

    Article  Google Scholar 

  31. Huynh, V.-V., et al.: Energy efficiency maximization of two-time-slot and three-time-slot two-way relay-assisted device-to-device underlaying cellular networks. Energies 13(13), 3422 (2020)

    Article  Google Scholar 

  32. Sibomana, L., Tran, H., Zepernick, Kabiri, C.: On non-zero secrecy capacity and outage probability of cognitive radio networks. In: Proceedings of the IEEE International Symposium Wireless Personal Multimedia Communications (WPMC), pp. 1—-6, Atlantic City, USA (2013)

    Google Scholar 

  33. Zhang, J., Kundu, C., Dobre, O.A., Garcia-Palacios, E., Vo, N.: Secrecy performance of small-cell networks with transmitter selection and unreliable backhaul under spectrum sharing environment. IEEE Trans. Vehicular Technol. 68(11), 10895–10908 (2019)

    Article  Google Scholar 

  34. Erdogan, E., Birol, A., Gucluoglu, T.: Error probability performance of channel estimation error on cognitive multi relay networks. In Proceedings of the 25th Signal Processing and Communications Applications Conference (SIU), pp. 1–4. Antalya (2017)

    Google Scholar 

  35. Liu, Y., Wang, L., Raza Zaidi, S.A., Elkashlan, M., Duong, T.Q.: Secure D2D communication in large-scale cognitive cellular networks: a wireless power transfer model. IEEE Trans. Commun. 64(1), 329–342 (2016)

    Article  Google Scholar 

  36. Kalamkar, S.S., Majhi, S., Banerjee, A.: Outage analysis of spectrum sharing energy harvesting cognitive relays in Nakagami-m channels. In: Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), pp. 1–6, San Diego, CA, USA (2015)

    Google Scholar 

  37. McKay, M.R., Grant, A.J., Collings, I.B.: Performance analysis of MIMO-MRC in double-correlated rayleigh environments. IEEE Trans. Commun. 55(3), 497–507 (2007)

    Article  Google Scholar 

  38. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, New York (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the Czech Ministry of Education under grant No. SP2020/65 conducted at VSB - Technical University of Ostrava and computational time was provided within projects OPEN-19-38 and OPEN-16-32 in the National Supercomputing Centre IT4Innovations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang-Sy Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, HS., Nguyen, N.X.H., Ma, QP., Jalowiczor, J., Voznak, M. (2020). Symbol Error Probability of Secondary User in Underlay Cognitive Radio Networks with Adaptive Transmit Power Constraint. In: Dziech, A., Mees, W., Czyżewski, A. (eds) Multimedia Communications, Services and Security. MCSS 2020. Communications in Computer and Information Science, vol 1284. Springer, Cham. https://doi.org/10.1007/978-3-030-59000-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59000-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58999-8

  • Online ISBN: 978-3-030-59000-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics