Skip to main content

A Graph Partitioning Algorithm for Edge or Vertex Balance

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12391))

Included in the following conference series:

  • 1316 Accesses

Abstract

The definition of effective strategies for graph partitioning is a major challenge in distributed environments since an effective graph partitioning allows to considerably improve the performance of large graph data analytics computations. In this paper, we propose a multi-objective and scalable Balanced GRAph Partitioning (B-GRAP) algorithm to produce balanced graph partitions. B-GRAP is based on Label Propagation (LP) approach and defines different objective functions to deal with either vertex or edge balance constraints while considering edge direction in graphs. The experiments are performed on various graphs while varying the number of partitions. We evaluate B-GRAP using several quality measures and the computation time. The results show that B-GRAP (i) provides a good balance while reducing the cuts between the different computed partitions (ii) reduces the global computation time, compared to Spinner algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\varDelta \mathbf{Time} = \frac{Time(Spinner) - Time(\text {B-GRAP})}{Time(Spinner)}\).

References

  1. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge discovery and data mining, p. 44. ACM Press (2006)

    Google Scholar 

  2. Bader, D., Meyerhenke, H., Wagner, D.: Graph Partitioning and Graph Clustering, Contemporary Mathematics, vol. 588 (2013)

    Google Scholar 

  3. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 117–158. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49487-6_4

    Chapter  Google Scholar 

  4. Chakraborty, T., Dalmia, A., Mukherjee, A., Ganguly, N.: Metrics for community analysis: a survey 50(4), 1–37 (2016)

    Google Scholar 

  5. Chevalier, C., Pellegrini, F.: PT-Scotch: a tool for efficient parallel graph ordering. Technical report, pp. 6-8 (2008)

    Google Scholar 

  6. Das, H., Kumar, S.: A parallel TSP-based algorithm for balanced graph partitioning. In: 2017 46th International Conference on Parallel Processing (ICPP), pp. 563–570. IEEE (2017)

    Google Scholar 

  7. Giraph, A.: Giraph : Large-scale graph processing in Hadoop (2012)

    Google Scholar 

  8. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: distributed graph-parallel computation on natural graphs. In: Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation, pp. 17–30 (2012)

    Google Scholar 

  9. Gregory, S.: Finding overlapping communities in networks by label propagation 12(10), 103018 (2010)

    Google Scholar 

  10. Heidari, S., Simmhan, Y., Calheiros, N., Buyya, R.: Scalable graph processing frameworks: a taxonomy and open challenges 51, 1–53 (2018)

    Google Scholar 

  11. Henzinger, A., Noe, A., Schulz, C.: ILP-based local search for graph partitioning (2018)

    Google Scholar 

  12. Karypis, G., Kumar, V.: Multilevel graph partitioning schemes. In: Proceedings of the 24th International Conference on Parallel Processing (ICPP) 1955, vol. 3, pp. 113–122 (1995)

    Google Scholar 

  13. Karypis, G., Kumar, V.: A parallel algorithm for multilevel graph partitioning and sparse matrix ordering, 48(1), 71–95 (1998)

    Google Scholar 

  14. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the 28th International Conference on Human factors in computing systems, p. 1361 (2010)

    Google Scholar 

  15. Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection (2014). https://snap.stanford.edu/data/index.html

  16. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters 6(1), 29–123 (2009)

    Google Scholar 

  17. Li, Y., Constantin, C., du Mouza, C.: A block-based edge partitioning for random walks algorithms over large social graphs. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10042, pp. 275–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48743-4_22

    Chapter  Google Scholar 

  18. Lin, J.: Divergence measures based on the shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991)

    Article  MathSciNet  Google Scholar 

  19. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 135–146 (2010)

    Google Scholar 

  20. Martella, C., Logothetis, D., Loukas, A., Siganos, G.: Spinner: scalable graph partitioning in the cloud. In: Proceedings - International Conference Data Engineering (2017)

    Google Scholar 

  21. Meyerhenke, H., Sanders, P., Schulz, C.: Parallel graph partitioning for complex networks, 28, 2625–2638 (2017)

    Google Scholar 

  22. Nguyen, D.: Graph Partitioning. ISTE (2011)

    Google Scholar 

  23. Pellegrini, F., Roman, J.: Scotch: a software package for static mapping by dual recursive bipartitioning of process and architecture graphs. In: Proceedings of the International Conference and Exhibition on High-Performance Computing and Networking, pp. 493–498. HPCN Europe 1996 (1996)

    Google Scholar 

  24. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks, p. 036106 (2007)

    Google Scholar 

  25. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the 29 AAAI (2015)

    Google Scholar 

  26. Sanders, P., Schulz, C.: Think locally, act globally: highly balanced graph partitioning. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 164–175. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38527-8_16

    Chapter  Google Scholar 

  27. Tsourakakis, C., Gkantsidis, C., Radunovic, B., Vojnovic, M.: FENNEL: streaming graph partitioning for massive scale graphs. In: Proceedings of the 7th ACM International Conference on Web search and data mining, pp. 333–342 (2014)

    Google Scholar 

  28. Ugander, J., Backstrom, L.: Balanced label propagation for partitioning massive graphs. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining, pp. 507–516. WSDM 2013, ACM (2013)

    Google Scholar 

  29. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX: a resilient distributed graph system on spark. In: First International Workshop on Graph Data Management Experiences and Systems, pp. 1–6. ACM Press (2013)

    Google Scholar 

  30. Zafarani, R., Liu, H.: Users joining multiple sites: distributions and patterns (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan El Moussawi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moussawi, A.E., Seghouani, N.B., Bugiotti, F. (2020). A Graph Partitioning Algorithm for Edge or Vertex Balance. In: Hartmann, S., Küng, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2020. Lecture Notes in Computer Science(), vol 12391. Springer, Cham. https://doi.org/10.1007/978-3-030-59003-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59003-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59002-4

  • Online ISBN: 978-3-030-59003-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics