Skip to main content

An Explainable Artificial Intelligence Methodology for Hard Disk Fault Prediction

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12391))

Included in the following conference series:

Abstract

Failure rates of Hard Disk Drives (HDDs) are high and often due to a variety of different conditions. Thus, there is increasing demand for technologies dedicated to anticipating possible causes of failure, so to allow for preventive maintenance operations. In this paper, we propose a framework to predict HDD health status according to a long short-term memory (LSTM) model. We also employ eXplainable Artificial Intelligence (XAI) tools, to provide effective explanations of the model decisions, thus making the final results more useful to human decision-making processes. We extensively evaluate our approach on standard data-sets, proving its feasibility for real world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.backblaze.com/b2/hard-drive-test-data.html.

  2. 2.

    https://www.backblaze.com/blog/hard-drive-smart-stats/.

References

  1. Allen, B.: Monitoring hard disks with smart. Linux J. 117, 74–77 (2004)

    Google Scholar 

  2. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., MÞller, K.R.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Basak, S., Sengupta, S., Dubey, A.: Mechanisms for integrated feature normalization and remaining useful life estimation using LSTMs applied to hard-disks. In: 2019 IEEE SMARTCOMP, pp. 208–216 (June 2019)

    Google Scholar 

  4. Botezatu, M.M., Giurgiu, I., Bogojeska, J., Wiesmann, D.: Predicting disk replacement towards reliable data centers. In: 22nd ACM SIGKDD, pp. 39–48 (2016)

    Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  6. Gunning, D.: Explainable artificial intelligence (xai). DARPA 2 (2017)

    Google Scholar 

  7. Louppe, G.: Understanding random forests: From theory to practice. arXiv preprint arXiv:1407.7502 (2014)

  8. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. NIPS 30, 4765–4774 (2017)

    Google Scholar 

  9. Mahdisoltani, F., Stefanovici, I., Schroeder, B.: Proactive error prediction to improve storage system reliability. In: USENIX ATC 2017, pp. 391–402 (2017)

    Google Scholar 

  10. Ponemon, L.: Cost of Data Center Outages. Data Center Performance Benchmark Series (2016)

    Google Scholar 

  11. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” Explaining the predictions of any classifier. In: 22nd ACM SIGKDD, pp. 1135–1144 (2016)

    Google Scholar 

  12. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn. 53(1–2), 23–69 (2003)

    Article  Google Scholar 

  13. Sankar, S., Shaw, M., Vaid, K., Gurumurthi, S.: Datacenter scale evaluation of the impact of temperature on hard disk drive failures. ACM TOS 9(2), 1–24 (2013)

    Article  Google Scholar 

  14. Sengupta, S., et al.: A review of deep learning with special emphasis on architectures, applications and recent trends. Knowl. Based Syst. 194, 105596 (2020)

    Article  Google Scholar 

  15. Shen, J., Wan, J., Lim, S.J., Yu, L.: Random-forest-based failure prediction for hard disk drives. Int. J. Distrib. Sens. Netw. 14(11), 1550147718806480 (2018)

    Article  Google Scholar 

  16. Wang, Y., Jiang, S., He, L., Peng, Y., Chow, T.W.: Hard disk drives failure detection using a dynamic tracking method. In: IEEE 17th INDIN, vol. 1, pp. 1473–1477 (2019)

    Google Scholar 

  17. Xiao, J., Xiong, Z., Wu, S., Yi, Y., Jin, H., Hu, K.: Disk failure prediction in data centers via online learning. In: Proceedings of the 47th ICPP, p. 35. ACM (2018)

    Google Scholar 

  18. Xie, Y., Feng, D., Wang, F., Tang, X., Han, J., Zhang, X.: DFPE: explaining predictive models for disk failure prediction. In: 35th MSST, pp. 193–204. IEEE (2019)

    Google Scholar 

  19. Zhang, J., Wang, J., He, L., Li, Z., Philip, S.Y.: Layerwise perturbation-based adversarial training for hard drive health degree prediction. In: 2018 IEEE ICDM, pp. 1428–1433. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Sperlí .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galli, A., Moscato, V., Sperlí, G., Santo, A.D. (2020). An Explainable Artificial Intelligence Methodology for Hard Disk Fault Prediction. In: Hartmann, S., Küng, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2020. Lecture Notes in Computer Science(), vol 12391. Springer, Cham. https://doi.org/10.1007/978-3-030-59003-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59003-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59002-4

  • Online ISBN: 978-3-030-59003-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics