Abstract
There can be observed a constant increase in the number of sensors used in computer vision systems. This affects especially mobile robots designed to operate in crowded environment. Such robots are commonly equipped with a wide range of depths sensors like Lidars and RGB-D cameras. The sensors must be properly calibrated and their reference frames aligned. This paper presents a calibration procedure for Lidars and RGB-D sensors. A simple inflated ball is used as a calibration pattern. The method applies RanSaC algorithm for pattern detection. The detected sphere centroids are then aligned to estimate rigid transformation between sensors. In addition, an improved GPU RanSaC procedure together with color filtering for RGB-D sensors is used for increased efficiency. The experiments show that this basic calibration setup offers accuracies comparable to those reported in literature. There is also demonstrated a significant speedup due to utilization of GPU-supported procedures as well as proposed color prefiltering.
The research was supported by the United Robots company under a NCBiR grant POIR.01.01.01-00-0206/17.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 9(5), 698–700 (1987)
Debattisti, S., Mazzei, L., Panciroli, M.: Automated extrinsic laser and camera inter-calibration using triangular targets. In: 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 696–701 (2013)
Fernandez-Rordiguez, S., Wedekind, J.: Recognition of 2D-objects using RANSAC. Technical report, Sheffield Hallam University, January 2008
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692
Geiger, A., Moosmann, F., Car, Ö., Schuster, B.: Automatic camera and range sensor calibration using a single shot. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3936–3943 (2012)
Guindel, C., Beltrán, J., Martín, D., García, F.: Automatic extrinsic calibration for lidar-stereo vehicle sensor setups. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6 (2017)
Hasting, G., Rubin, A.: Colour spaces - a review of historic and modern colour models*. African Vis. Eye Health 71 (2012). https://doi.org/10.4102/aveh.v71i3.76
Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944). http://www.jstor.org/stable/43633451
Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963). https://doi.org/10.1137/0111030
Moghadam, P., Bosse, M., Zlot, R.: Line-based extrinsic calibration of range and image sensors. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3685–3691 (2013)
Park, Y., Yun, S., Won, C., Cho, K., Um, K., Sim, S.: Calibration between color camera and 3D lidar instruments with a polygonal planar board. Sensors (Basel, Switzerland) 14, 5333–5353 (2014). https://doi.org/10.3390/s140305333
Pereira, M., Silva, D., Santos, V., Dias, P.: Self calibration of multiple lidars and cameras on autonomous vehicles. Robot. Auton. Syst. 83 (2016). https://doi.org/10.1016/j.robot.2016.05.010
Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, January 2009
Ros approximate time synchronization filter. http://wiki.ros.org/message_filters/ApproximateTime. Accessed 14 May 2020
Rusu, R., Cousins, S.: 3D is here: point cloud library (PCL). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4, May 2011. https://doi.org/10.1109/ICRA.2011.5980567
Velas, M., Spanel, M., Materna, Z., Herout, A.: Calibration of RGB camera with velodyne lidar. In: Communication Papers Proceedings International Conference on Computer Graphics, Visualization and Computer Vision (WSCG) (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wilkowski, A., Mańkowski, D. (2020). RGB-D and Lidar Calibration Supported by GPU. In: Chmielewski, L.J., Kozera, R., Orłowski, A. (eds) Computer Vision and Graphics. ICCVG 2020. Lecture Notes in Computer Science(), vol 12334. Springer, Cham. https://doi.org/10.1007/978-3-030-59006-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-59006-2_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59005-5
Online ISBN: 978-3-030-59006-2
eBook Packages: Computer ScienceComputer Science (R0)