Abstract
Simulation of a dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) multiple sclerosis brain dataset is described. The simulated images in the implemented version have \(1\times 1\times 1\,\mathrm {mm}^3\) voxel resolution and arbitrary temporal resolution. Addition of noise and simulation of thick-slice imaging is also possible. Contrast agent (Gd-DTPA) passage through tissues is modelled using the extended Tofts-Kety model. Image intensities are calculated using signal equations of the spoiled gradient echo sequence that is typically used for DCE imaging. We then use the simulated DCE images to study the impact of slice thickness and noise on the estimation of both semi- and fully-quantitative pharmacokinetic features. We show that high spatial resolution images allow significantly more accurate modelling than interpolated low resolution DCE images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Profile: DCE MRI quantification (2012). http://qibawiki.rsna.org/index.php/Profiles
Banerji, A.: Modelling and simulation of dynamic contrast-enhanced MRI of abdominal tumours. Ph.D. thesis (2012)
Betrouni, N., Tartare, G.: ProstateAtlas SimDCE: a simulation tool for dynamic contrast enhanced imaging of prostate. IRBM 36(3), 166–169 (2015)
Bosca, R.J., Jackson, E.F.: Creating an anthropomorphic digital MR phantom-an extensible tool for comparing and evaluating quantitative imaging algorithms. Phys. Med. Biol. 61(2), 974 (2016)
Collins, D.L., et al.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17, 463–468 (1998). https://doi.org/10.1109/42.712135
Cuenod, C.A., Balvay, D.: Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn. interv. Imaging 94, 1187–1204 (2013). https://doi.org/10.1016/j.diii.2013.10.010
Dikaios, N., Arridge, S., Hamy, V., Punwani, S., Atkinson, D.: Direct parametric reconstruction from undersampled (k, t)-space data in dynamic contrast enhanced MRI. Med. Image Anal. 18(7), 989–1001 (2014)
Fabijańska, A.: A novel approach for quantification of time-intensity curves in a DCE-MRI image series with an application to prostate cancer. Comput. Biol. Med. 73, 119–130 (2016). https://doi.org/10.1016/j.compbiomed.2016.04.010
Furman-Haran, E., Grobgeld, D., Kelcz, F., Degani, H.: Critical role of spatial resolution in dynamic contrast-enhanced breast MRI. J. Magn. Reson. Imaging (JMRI) 13, 862–867 (2001). https://doi.org/10.1002/jmri.1123
Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34, 910–914 (1995). https://doi.org/10.1002/mrm.1910340618
Haq, N.F., Kozlowski, P., Jones, E.C., Chang, S.D., Goldenberg, S.L., Moradi, M.: A data-driven approach to prostate cancer detection from dynamic contrast enhanced MRI. Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. 41, 37–45 (2015). https://doi.org/10.1016/j.compmedimag.2014.06.017
He, D., Xu, L., Qian, W., Clarke, J., Fan, X.: A simulation study comparing nine mathematical models of arterial input function for dynamic contrast enhanced MRI to the Parker model. Australas. Phys. Eng. Sci. Med. 41(2), 507–518 (2018). https://doi.org/10.1007/s13246-018-0632-0
Jurek, J.: Super-resolution reconstruction of three dimensional magnetic resonance images using deep and transfer learning. Ph.D. thesis (2020)
Jurek, J., Kociński, M., Materka, A., Elgalal, M., Majos, A.: CNN-based superresolution reconstruction of 3D MR images using thick-slice scans. Biocybern. Biomed. Eng. 40(1), 111–125 (2020)
Khalifa, F., et al.: Models and methods for analyzing DCE-MRI: a review. Med. Phys. 41, 124301 (2014). https://doi.org/10.1118/1.4898202
Kwan, R.K., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 18, 1085–1097 (1999). https://doi.org/10.1109/42.816072
Kwan, R.K.-S., Evans, A.C., Pike, G.B.: An extensible MRI simulator for post-processing evaluation. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 135–140. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0046947
van der Leij, C., Lavini, C., van de Sande, M.G.H., de Hair, M.J.H., Wijffels, C., Maas, M.: Reproducibility of DCE-MRI time-intensity curve-shape analysis in patients with knee arthritis: a comparison with qualitative and pharmacokinetic analyses. J. Magn. Reson. Imaging (JMRI) 42, 1497–1506 (2015). https://doi.org/10.1002/jmri.24933
O’Connor, J., Tofts, P., Miles, K., Parkes, L., Thompson, G., Jackson, A.: Dynamic contrast-enhanced imaging techniques: CT and MRI. Br. J. Radiol. 84(special\(\_\)issue\(\_\)2), S112–S120 (2011)
Orton, M.R., et al.: Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys. Med. Biol. 53, 1225–1239 (2008). https://doi.org/10.1088/0031-9155/53/5/005
Pannetier, N.A., Debacker, C.S., Mauconduit, F., Christen, T., Barbier, E.L.: A simulation tool for dynamic contrast enhanced MRI. PLoS ONE 8, e57636 (2013). https://doi.org/10.1371/journal.pone.0057636
Parker, G.J.M., et al.: Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn. Reson. Med. 56, 993–1000 (2006). https://doi.org/10.1002/mrm.21066
Reichenbach, J., Hackländer, T., Harth, T., Hofer, M., Rassek, M., Mödder, U.: 1H T1 and T2 measurements of the MR imaging contrast agents Gd-DTPA and Gd-DTPA BMA at 1.5T. Eur. Radiol. 7(2), 264–274 (1997). https://doi.org/10.1007/s003300050149
Tofts, P.S.: Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J. Magn. Reson. Imaging (JMRI) 7, 91–101 (1997). https://doi.org/10.1002/jmri.1880070113
Tofts, P.S., Kermode, A.G.: Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Mag. Reson. Med. 17(2), 357–367 (1991)
Weinmann, H.J., Laniado, M., Mützel, W.: Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol. Chem. Phys. Med. NMR 16(2), 167–172 (1984)
Yankeelov, T., Gore, J.: Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr. Med. Imaging Rev. 3(2), 91–107 (2009). https://doi.org/10.2174/157340507780619179
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Jurek, J., Reisæter, L., Kociński, M., Materka, A. (2020). On the Effect of DCE MRI Slice Thickness and Noise on Estimated Pharmacokinetic Biomarkers – A Simulation Study. In: Chmielewski, L.J., Kozera, R., Orłowski, A. (eds) Computer Vision and Graphics. ICCVG 2020. Lecture Notes in Computer Science(), vol 12334. Springer, Cham. https://doi.org/10.1007/978-3-030-59006-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-59006-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59005-5
Online ISBN: 978-3-030-59006-2
eBook Packages: Computer ScienceComputer Science (R0)