Abstract
In the last decade, special attention has been made toward the automated analysis of human activity and other related fields. Cricket, as a research field, has of late received more attention due to its increased popularity. The cricket domain currently lacks datasets, specifically relating to cricket strokes. The limited datasets restrict the amount of research within the environment. In the study, this research paper proposes a scene recognition model to recognize frames with a cricket batsman. Two different classes are addressed, namely; the gameplay class and the stroke class. Two pipelines were evaluated; the first pipeline proposes the Support Vector Machine (SVM) algorithm, which undergoes data capturing, feature extraction using histogram of oriented gradients and lastly classification. The Support Vector Machine (SVM) model yielded an accuracy of 95.441%. The second pipeline is the AlexNet Convolutional Neural Network (CNN) architecture, which underwent data capturing, data augmentation that includes rescaling and shear zoom followed by feature extraction and classification using AlexNet. The AlexNet architecture performed exceptionally well, producing a model accuracy of 96.661%. The AlexNet pipeline is preferred over the Support Vector Machine pipeline for the domain. By recognizing a significant event, that is when a stroke and none stoke (gameplay) scene is recognized. The model is able to filter only relevant footage from large volumes of data, which is then later used for analysis. The research proves there is value in exploring deep-learning methods for scene recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Articles, C.T.: Cricket basics explanation. http://www.chicagotribune.com/chi-cricket-basics-explanation-gfx-20150215-htmlstory.html
cricket.com.au: second test: Australia v england, day three. YouTube, December 2017. https://www.youtube.com/watch?v=7jElHzWzqAk&t=5s
Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)
Fei-Fei, L., Li, L.J.: What, where and who? Telling the story of an image by activity classification, scene recognition and object categorization. In: Cipolla, R., Battiato, S., Farinella, G.M. (eds.) Computer Vision. Studies in Computational Intelligence, vol. 285 pp. 157–171. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12848-6_6
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31865-1_25
Gunn, S.R., et al.: Support vector machines for classification and regression. ISIS Tech. Rep. 14(1), 5–16 (1998)
Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification (2003)
Huggi, S.K., Nandyal, S.: Detecting events in cricket videos using RF classifier. Int. J. Adv. Res. Found. 3, 1–5 (2016)
Kang, S., Cho, S., Kang, P.: Constructing a multi-class classifier using one-against-one approach with different binary classifiers. Neurocomputing 149, 677–682 (2015)
Kapela, R., McGuinness, K., O’Connor, N.E.: Real-time field sports scene classification using colour and frequency space decompositions. J. Real-Time Image Process. 13(4), 725–737 (2017). https://doi.org/10.1007/s11554-014-0437-7
Knight, J.: Cricket for Dummies. Wiley, Hoboken (2013)
Kolekar, M.H., Palaniappan, K., Sengupta, S.: Semantic event detection and classification in cricket video sequence. In: Sixth Indian Conference on Computer Vision, Graphics & Image Processing, ICVGIP 2008, pp. 382–389. IEEE (2008)
Kondratenko, Y.P.: Robotics, automation and information systems: future perspectives and correlation with culture, sport and life science. In: Gil-Lafuente, A.M., Zopounidis, C. (eds.) Decision Making and Knowledge Decision Support Systems. LNEMS, vol. 675, pp. 43–55. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-03907-7_6
Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)
Saha, S.: A comprehensive guide to convolutional neural networks. Technical report, Medium (2018)
Suard, F., Rakotomamonjy, A., Bensrhair, A., Broggi, A.: Pedestrian detection using infrared images and histograms of oriented gradients. In: 2006 IEEE Intelligent Vehicles Symposium, pp. 206–212. IEEE (2006)
Van De Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2009)
Wencheng, C., Xiaopeng, G., Hong, S., Limin, Z.: Offline Chinese signature verification based on AlexNet. In: Sun, G., Liu, S. (eds.) ADHIP 2017. LNICST, vol. 219, pp. 33–37. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73317-3_5
Zhou, W., Gao, S., Zhang, L., Lou, X.: Histogram of oriented gradients feature extraction from raw Bayer pattern images. IEEE Trans. Circuits Syst. II Express Briefs 67, 946–950 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Moodley, T., van der Haar, D. (2020). Scene Recognition Using AlexNet to Recognize Significant Events Within Cricket Game Footage. In: Chmielewski, L.J., Kozera, R., Orłowski, A. (eds) Computer Vision and Graphics. ICCVG 2020. Lecture Notes in Computer Science(), vol 12334. Springer, Cham. https://doi.org/10.1007/978-3-030-59006-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-59006-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59005-5
Online ISBN: 978-3-030-59006-2
eBook Packages: Computer ScienceComputer Science (R0)