1912.10617v3 [cs.CR] 25 Apr 2020

arxXiv

LNBot: A Covert Hybrid Botnet on Bitcoin
Lightning Network for Fun and Profit

Ahmet Kurt, Enes Erdin, Mumin Cebe, Kemal Akkaya, and
A. Selcuk Uluagac

Florida International University, Miami FL 33174, USA
{akurt005,eerdi001,mcebe,kakkaya, suluagac}@fiu.edu

Abstract. While various covert botnets were proposed in the past, they
still lack complete anonymization for their servers/botmasters or suffer
from slow communication between the botmaster and the bots. In this
paper, we propose a new generation hybrid botnet that covertly and
efficiently communicates over Bitcoin Lightning Network (LN), called
LNBot. LN is a payment channel network operating on top of Bitcoin
network for faster Bitcoin transactions with negligible fees. Exploiting
various anonymity features of LN, we designed a scalable two-layer bot-
net which completely anonymize the identity of the botmaster. In the
first layer, the botmaster sends commands anonymously to the C&C
servers through LN transactions. Specifically, LNBot allows botmaster’s
commands to be sent in the form of surreptitious multihop LN payments,
where the commands are encoded with ASCII or Huffman encoding to
provide covert communications. In the second layer, C&C servers fur-
ther relay those commands to the bots they control in their mini-botnets
to launch any type of attacks to victim machines. We implemented a
proof-of-concept on the actual LN and extensively analyzed the delay
and cost performance of LNBot. Our analysis show that LNBot achieves
better scalibility compared to the other similar blockchain botnets with
negligible costs. Finally, we also provide and discuss a list of potential
countermeasures to detect LNBot activities and minimize its impacts.

Keywords: Lightning Network - Botnet - Covert Channel.

1 Introduction

Botnets are networks of computing devices infected with malicious software that
is under the control of an attacker, known as bot herder or botmaster [28]. The
owner of the botnet controls the bots (i.e., devices that become part of the botnet)
through command and control (C&C) server(s) which can communicate with
the bots using a C&C channel and can launch various attacks through these
bots, including, but not limited to, denial of service (DoS) attacks, information
and identity theft, sending spam messages, and other activities. Naturally, a
botmaster’s goal is to make it difficult for law enforcement to detect and prevent
malicious operations. Therefore, establishing a secure C&C infrastructure and
hiding the C&C server identity play a key role in the long-lasting operation of
botnets.

2 A. Kurt et al.

Numerous botnets have been proposed and deployed in the past [I2I31]. Re-
gardless of their communication infrastructure being centralized or peer-to-peer,
existing botnet C&C channels and servers have the challenge of remaining hid-
den and being resistant against legal authorities’ actions. Such problems mo-
tivate hackers to always explore more promising venues for finding new C&C
channels with the ever-increasing number of communication options on the In-
ternet. One such platform is the environment where cryptocurrencies, such as
Bitcoin, is exchanged. As Bitcoin offers some degree of anonymity, exploiting
it as a C&C communication channel has already been tried for creating new
botnets [32]. While these Bitcoin-based botnets addressed the long transaction
validation times, they still announce the commands publicly, where the botnet
activity can be traced by any observer with the help of the Bitcoin addresses or
nonce values of the transactions. By using Bitcoin for botnet communications,
C&C leaves the history of malicious activities on the blockchain forever.

Nonetheless, the issues regarding the public announcement of commands and
leaving traces in the blockchain are already being addressed in a newly developed
Bitcoin payment channel network called Lightning Network (LN). LN enables
off-line transactions (i.e., transactions which are not announced and thus not
recorded on the blockchain) in order to speed up the transaction by eliminat-
ing the confirmation time and decreasing fees associated with that transaction.
Additionally, users’ identities are still kept anonymous since the transactions
are not announced publicly. In this paper, we advocate using LN as an ideal
C&C infrastructure for botnets with all the aforementioned features (i.e., faster
transactions, decreased costs). Specifically, LN offers botmasters numerous ad-
vantages over existing techniques: First, LN provides very high anonymity since
transactions on the off-chain channels are not recorded on the blockchain. Thus,
a botmaster can covertly communicate with the C&C server(s). Second, the
revelation of a server does not reveal other servers, and an observer cannot enu-
merate the size of the botnet. Most importantly, C&C communication over the
LN cannot be censored.

Although LN is a fast-growing emerging payment network, it only has around
12K nodes which may not be ideal for large-scale botnets. Therefore, we propose
a two-layer hybrid botnet to use LN as an infrastructure to maintain a network
of C&C servers each of which can run its own botnet. The use of multiple C&C
servers has been around for a while [21]. However, the communication with these
servers was still assumed to be through the existing communication infrastruc-
tures which impairs the servers’ anonymity. Therefore, further strengthening of
anonymity is still needed.

Hence, this paper presents LNBot, which is the first botnet that utilizes LN
infrastructure for its communications between the botmaster and C&C servers
with a two-layer hybrid architecture. Specifically, at the first layer, a botmaster
will maintain multiple C&C servers, which are nodes on the LN that have spe-
cialized software to control the bots under them. Essentially, each C&C server
is controlling an independent isolated mini-botnet at the second layer. These
mini-botnets are controlled using a specific C&C infrastructure that can rely on

Title Suppressed Due to Excessive Length 3

traditional means such as stenography, IRC channel, DNS, Tor, etc. Botmaster
sends the commands to the C&C servers covertly through LN. This two-layer
command and control topology not only enables scalability, but also minimizes
the burden on each C&C server, which increases their anonymity.

To demonstrate the feasibility of the concept, we implemented the LNBot
using real LN nodes in Bitcoin’s Testnet which is the actual network for Bitcoin.
Utilizing one-to-many architecture (i.e., botmaster sends commands to all C&C
servers separately), we show that by encoding the commands in terms of pay-
ments sent over LN, one can successfully send commands to the C&C servers
that are part of the LN. These C&C servers further relay those commands to
the bots they control to launch any type of attack to victim machines.

Nevertheless, as sending the commands to every C&C server in the form of
payment requires the botmaster to maintain high capacity LN channels (i.e.,
increased monetary cost) and pay forwarding fees to LN, we also propose mech-
anisms to further decrease these costs to the levels where they can be neglected.
Specifically, when the attacks are executed, we circulate the received payments
at C&C servers back to botmaster. Essentially, this means the botmaster will re-
ceive all of his/her money back except the fees charged by LN. To also minimize
those fees, in addition to ASCII-based encoding, we propose a Huffman-based
encoding mechanism which considers the frequency of characters that could po-
tentially be used in constructing the attack commands. We demonstrate that for
a network comprising 100 C&C servers, the total fixed fees for forming LNBot
would be lower than $5.

Contrary to the traditional blockchain based communication schemes, LNBot
covertly communicates with the C&C servers by utilizing the strong relationship
anonymity of LN. This covert communication comes with a very little cost and
latency overhead. Additionally, since LNBot does not require a custom C&C in-
frastructure, it is very practical to deploy it. All these features of LNBot makes
it a botnet that needs to be taken seriously therefore we provide a list of coun-
termeasures that may help detect LNBot activity and minimize damages from
it.

The rest of the paper is organized as follows: In Section |2, we give some
background information about LN. In Section[3] we describe the architecture and
construction of our proposed LNBot. Section [is dedicated to proof-of-concept
implementation in real world settings while Section [5| presents the evaluation
results. In Section [6] possible countermeasures for LNBot is discussed. Related
work is given in Section [7] Finally, we conclude the paper in Section

2 Background

2.1 Lightning Network

The LN concept is introduced in [26]. It is a payment protocol operating on top of
Bitcoin. Through this concept, an overlay payment network (i.e., LN) is started
among the customers and vendors in 2017. The aim in creating the LN was to
decrease the load on the Bitcoin network, facilitating transactions with affordable
fees and reduced transaction validation times, and increasing the scalability of

4 A. Kurt et al.

Bitcoin by establishing peer-to-peer connections. Despite the big fluctuations in
the price of Bitcoin recently, the LN grew exponentially reaching 12,384 nodes
and 36,378 channels in less than two years by the time of writing this paper [I].
In the following subsections, we briefly explain the components of LN.

2.2 Off-chain Concept

The main idea behind LN is to utilize the off-chain concept [24] which en-
ables near-instant Bitcoin transactions with negligible fees. This is accomplished
through bidirectional payment channels which are created among two parties
to exchange funds without committing the transactions to Bitcoin blockchain.
The channel is opened by making a single on-chain transaction called funding
transaction. The funding transaction determines the capacity of the channel.
Whenever one of the parties wants to make a transaction, she basically conveys
ownership of that amount of her money to her peer. So, after a transaction takes
place the total capacity in the channel does not change but the directional ca-
pacities do. Therefore, the peers can make as many as transactions they want in
any amount unless the amount they want to send does not exceed the directional
capacity. The example shown in Fig. [I] illustrates the concept in more detail.

Alice: 5B 2-0f2 On-chain 20f2 Alice: 18
Multisignature T G Multisignature
) : ransactions : (
[Bob: 0B (g (GDE ’ Bob: 48 l
Opening the Channel @ Closing the Channel @
A&B A&B A&B
Off-chain 18 28 8
Transactions YN .
@ ‘ Bob: 1B ‘ ‘ Bob: 38 ‘ ‘ Bob: 48 ‘

Fig. 1: Off-chain mechanism of LN.

Per figure, @) Alice opens a channel to Bob by funding 5 Bitcoins to a multi-
signature address and the multi-signature address is signed by both Alice and
Bob. @ Using this channel, Alice can send payments to Bob simply by trans-
ferring the ownership of her share in the multi-signature address until her fund
in the address is exhausted. Note that these transactions are off-chain meaning
they are not written to the Bitcoin blockchain which is a unique feature of LN
and that feature is exploited in our botnet. Alice performs 3 transactions at
different times with amounts of 1, 2 and 1 Bitcoin respectively. (3) Eventually,
when the channel is closed, the remaining 1 Bitcoin in the multi-signature wallet
is returned to Alice while the total transferred 4 Bitcoins are settled at Bob.
Channel closing is another on-chain transaction that reports the final balances
of Alice and Bob in the multi-signature address to the blockchain.

2.3 Multihop Payments

In LN, a node can make payments to another node even if it does not have a direct
payment channel to that node. This is achieved by utilizing already established

Title Suppressed Due to Excessive Length 5

payment channels between other nodes and such a payment is called multi-hop
payment since the payment is forwarded through a number of intermediary nodes
until reaching the destination. This process is trustless meaning the sender does
not need to trust the intermediary nodes along the route. Fig. [2| depicts a multi-
hop payment. As there is a direct payment channel between Alice and Charlie
and between Charlie and Bob, Alice can initiate a transaction to Bob via Charlie.
@ First, Bob sends an invoice to Alice which includes the hash (H) of a secret
R (known as pre-image). (@ Then, Alice prepares a payment locked with H, the
answer of which is known by Bob. Hash-Locking is required for Alice to ensure
that the payment is received by Bob. So, locked with H, Alice gives ownership
of some of her money destined to Bob if and only if Charlie knows and discloses
the answer to H. Likewise, (3 Charlie promises to give the ownership of some
of his money which is locked by H to Bob if Bob knows the answer. As Bob
receives a payment he naturally discloses the answer to Charlie and in return he
gets the money from Charlie as promised. Now, as Charlie learned the answer,
he discloses the answer to Alice and gets his money from Alice as promised. This
mechanism is realized with the “Hash Time Lock Contracts” (HTLC). Through
this mechanism of LN, as long as there is a path from source to destination
requiring that the channels on the path have enough capacities, payments can
be routed just like the Internet.

Charlie

Fig. 2: Tllustration of a multihop payment. R is the secret (i.e. pre-hash) gener-
ated by Bob, H is the hash of the secret. When the transaction is locked by H,
yielding the secret R opens the lock. Namely, when asked, yielding R changes
the ownership of the money in the channel.

2.4 Key Send Payments

Key send in LN enables sending payments to a destination without needing to
have an invoice first [22]. It utilizes Sphinz[9] which is a compact and secure
cryptographic packet format to anonymously route a message from a sender to
a receiver. This is a very useful feature to have in LN because it introduces new
use cases where payers can send spontaneous payments without contacting the
payee first. In this mode, the sender generates the pre-image for the payment
instead of the receiver and embeds the pre-image into the sphinx packet within
the outgoing HTLC. If an LN node accepts key send payments, then it only
needs to advertise its public key to receive key send payments from other nodes.
In LNBot, we utilize this feature to send payments from botmaster to C&C
servers.

2.5 Source Routing & Onion Routed Payments

With the availability of multi-hop payments, a routing mechanism is needed to
select the best route for sending a payment to its destination. LN utilizes source

6 A. Kurt et al.

routing which gives the sender full control over the route for the transaction to
follow within the network. Senders are able to specify: 1) the total number of
hops on the path; 2) total cumulative fee they will pay to send the payment;
and 3) total time-lock period for the HTLC [14]. Moreover, all payments in
LN are onion-routed payments meaning that HTLCs are securely and privately
routed within the network. Onion routing LN also prevents any nodes from
easily censoring payments since they are not aware of the final destination of
the payment. Additionally, by encoding payment routes within a Sphinx packet,
following security and privacy features are achieved: the nodes on a routing path
do not know: 1) the source and the destination of the payment; 2) their exact
position within the route; and 3) the total number of hops in the route.

2.6 Motivation to Use LN for a Botnet

In this section, we justify why LN is suitable for a perfect botnet design.

— No publicly advertised activity: The drawback of using a cryptocurrency
based communication infrastructure is that all of the activities are publicly
stored in a persistent, transparent, append-only ledger. However, using the
off-chain transaction mechanism, only the intermediary nodes in a multi-hop
payment path know the transactions. Because, they are responsible to keep
the state of their own channels just to prove the ownership of their share in
case of a dispute. Namely, the activities taking place in a payment channel is
locally stored by the nodes responsible for forwarding that transaction.

— Covert messaging: LN was proposed to ease the problems occurring in
the Bitcoin network. Hence, all of the actions taking place in the network is
regarded as financial transactions. In that sense, twisting this idea into using
the channels for covertly forwarding commands will be indistinguishable from
innocent, legitimate, and real financial transactions.

— Relationship anonymity: LN utilizes source-routing for payment forward-
ing. This feature enables the peers to enjoy a higher anonymity. Assume that,
during a transaction let the next node successfully guess that the preceding
node was the origin of the transaction. Ideally, there is no possibility for it
to successfully guess the final destination for that transaction. This applies
to any “curious” node in the network. Namely, without collusion it is impos-
sible to know who communicates to whom, which is known as relationship
anonymity feature.

— Instantaneous communication: Apart from being public, another draw-
back of using Bitcoin network is that a transaction is approved in 10 minutes
the earliest. Moreover, for a transaction to be approved in the ledger for good,
the peers have to wait for at least 60 minutes. By moving to the off-chain,
a transaction simply becomes a network package traversing in the network
through the intermediary nodes. In that sense, the communication latency in
LN is nothing but the time for a packet to traverse on the Internet.

— Minimal cost: Bitcoin network charges fees for every transaction regardless
of its amount. LN was also designed to transform these fees into negligible
amounts. The fees charged by LN is comprised of the combination of a “base

Title Suppressed Due to Excessive Length 7

fee” and a “proportional fee” which are close to zero. In the 1nd implementa-
tion of LN, default setting for the base fee is 1 millisatoshﬂ The proportional
fee is, as name suggests it is proportional with the amount being forwarded,
0.0001% of the payment.

3 LNBot Architecture
In this section, we describe the overall architecture of LNBot with its elements.
3.1 Overview

The overall architecture is shown in Fig. [3| As shown, the LN is used to maintain
the C&C servers and their communication with the botmaster. Each C&C server
runs a separate mini-botnet. Note that it is up to the botmaster how to populate
these mini-botnets. Each C&C server can utilize a different botnet model (i.e.,
based on IRC, DNS, steganography, cryptocurrencies, etc).

Botmaster
O

Botmaster's
BTC Wallet

\

Bitcoin Lightning@‘l E] “E] Lightning C&C Servers are
Network Wallet 1 Wallet k Funded Here
Lightning
Wallet 2
LNBot Master
Server
. . Command Command
Lightning Through Through Commands are
Network Multihop -~ Command . Multihop Propagated Here

Payments Through .. Payments

C&C Cc&C
N Server 1 ¢ Server k
bo e

Steganography

Outside of _
LN and 4 4 Botnet Attacks
Bitcoin : ! are Performed
Network / B Here

Mini Botnet 2 Mini Botnet k

Fig. 3: Overview of LNBot Architecture.

1 A satoshi is defined to be 0.00000001 Bitcoin. In other words, 1 Bitcoin is 100 million
satoshi.

8 A. Kurt et al.

The botmaster could set up the C&C servers by creating LN nodes at remote
locations that are accessible to him/her. The botmaster knows the LN public
keys of all C&C servers since s/he sets them up. These public keys are needed
to communicate with them in the LN. Then s/he installs a special software on
the C&C servers which are used to control the bots. In this way, it is enough
for botmaster to release a malware into the wild for infecting user machines
and upon infection, these machines connect to existing available C&C servers
(i.e., they become bots). One possible way to achieve this would be to spread
the malware via embedded advertisements on web pages frequently visited by
intended victims. When a viewer clicks on the link, s/he is redirected to a website
hosting malicious code that executes in the background and infects the victim’s
machine without his/her knowledge.

Upon infection, the bot establishes a communication with an available C&C
server. The type of connection used depends on the communication method
chosen by the C&C server the bot connects to. This can be picked among existing
botnet C&C infrastructures such as IRC, DNS, steganography, cryptocurrencies
or even the LN itself.

The botmaster’s commands have to propagate to every C&C server, and
then, ultimately to every single bot through the C&C servers. For this task, we
propose one-to-many propagation where the botmaster sends commands to each
C&C server separately. This approach is described in Section[3.5] The botmaster
periodically issues commands to C&C servers by sending payments over LN.
Thus, the commands have to be encoded into a series of LN payments. We
implemented two encoding schemes to represent the commands as LN payments.
These methods are detailed in Section 3.6l

With the availability of command propagation, the C&C servers could now
listen to the incoming instructions from the botmaster. Next, we describe the
details of setting up the C&C servers.

3.2 Setting up the C&C Servers

As mentioned earlier, the botmaster can set up the necessary number of C&C
servers s/he would like to deploy. Depending on the objectives, the number of
these servers and the number of bots they will control can be adjusted without
any scalability concern. In Section [d] we explain how we set up real C&C servers
running on LN on the real Bitcoin network.

Each C&C server is deployed as a private LN node which means that they do
not advertise themselves within the LN. In this way, the other LN nodes do not
know about the existence of the C&C servers and cannot open channels to them
without knowing their public keys. However, without opening any channels on
the network, C&C servers cannot get botmaster’s payments on LN. Therefore,
each C&C servers open a channel to at least k different random public LN nodes.
To open the channels, they need some Bitcoin in their lightning wallets. This
Bitcoin is provided to C&C servers by the botmaster before deploying them.
The number k£ may be tuned depending on the size and topology of LN when
LNBot will have deployed in the future.

Title Suppressed Due to Excessive Length 9

3.3 Formation of Mini-botnets

After C&C servers are set up, we need bots to establish connections to C&C
servers. An infected machine (bot) connects to one of the C&C servers.As men-
tioned earlier, the details of bot recruitment and any malware implementation
issues are beyond the objectives of this paper. It is up to the botmaster to decide
which type of infrastructure the C&C servers will use to control the bots in their
possession. This flexibility is enabled by our proposed two-layer hybrid architec-
ture of LNBot. The reason for giving this flexibility is to enable scalability of
LNBot through any type of mini-botnets without bothering for the compromise
of any C&C servers. As it will be shown in Section [6] even if the C&C servers
are compromised, this neither reveals the other C&C servers nor the botmaster.

3.4 Forming LNBot

Now that C&C servers are set up and mini-botnets are formed, the next step is
to form the infrastructure to control these C&C servers covertly with minimal
chances of getting detected. This is where LN comes into play. Botmaster has
the public keys of all LN nodes running on C&C server machines. Since C&C
servers have their LN channels ready, they can receive the commands from the
botmaster. The botmaster uses an LN node called LNBot Master Server to
initiate the commands to all the C&C servers through LN payments. Similar to
the C&C servers, LNBot Master Server is also a private LN node and botmaster
has flexibility on the setup of this node and may change it regularly. Without
using any other custom infrastructure, the botmaster is able to control C&C
servers through LN, consequently controlling all the bots on the botnet.

3.5 Command Propagation in LNBot

Once the LNBot is formed, the next step is to ensure communication from the
botmaster to the C&C servers. We utilize a one-to-many architecture where the
botmaster sends the commands to each C&C server separately. The botmas-
ter uses key send method mentioned in Section [2:4] to send the payments. We
designed a command sending protocol for botmaster-to-C&C server communi-
cation as shown in Algorithm 1.

Before sending any payment, the botmaster first checks if the respective C&C
server is online or not (LN nodes have to be online in order to send and receive
payments). If the C&C server is not online, command sending is scheduled for
a later time. Botmaster sends 5 satoshi as the special starting payment of a
command before it sends the actual characters in the command one by one.
Lastly, the botmaster sends 6 satoshi as the special ending payment to finish
sending the command. Note that selection of 5 and 6 in this algorithm depends
on the chosen encoding and could be changed based on the needs. If any of
these separate payments fail, it is re-tried. If any of the payments fail for more
than k& times in a row, command transmission to the respective C&C server is
canceled and scheduled for a later time. The details of encoding and decoding
are explained next.

10

A. Kurt et al.

Algorithm 1: Send Command

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

initialize command,

int counter = 0;

bool isOnline = checkIfC&CServerIsOnline();
if isOnline then

o

else

bool result = send(5 satoshi);
if result=success then

counter = 0;
for character in command do
bool result = send(character);
if result=success then continue;
else if result=fail and counter < k then
retry sending character;
counter—+-+;
else reschedule(command, date, time);
end
counter = 0;
bool result = send(6 satoshi);
if result=success then
Command has been successfully sent!;
else if result=fail and counter < k then
retry sending 6 satoshi;
counter++;
else reschedule(command, date, time);

Ise if result=fail and counter < k then

retry sending 5 satoshi;
counter++;

else reschedule(command, date, time);

reschedule(command, date, time);

end

3.6 Encoding/Decoding Schemes

An important feature of LNBot is its ability to encode botmaster commands
into a series of LN payments. We used two different encoding/decoding schemes
for the purpose of determining the most efficient way of sending commands to
C&C servers in terms of Bitcoin cost and time spent. We explain the details of
each method below:

ASCII Encoding American Standard Code for Information Interchange (ASCII)
is a character encoding standard that represents English characters as numbers,
assigned from 0 to 127. Numbers 0-31 and 127 are reserved for control charac-
ters. The remaining 95 codes from 32 to 126 represent printable characters. The
decimal equivalent of ASCII characters can easily be looked up from an ASCII
table.

Title Suppressed Due to Excessive Length 11

Huffman Coding When there is a need to losslessly compress the information
being sent over a channel, due to its simple yet powerful approach, Huffman
coding is one of the optimal options [I3]. In usual communication systems, the
communication is done in binary domain. However, in the communication scheme
defined as in our approach, there is no strict need for binary communication. In
the formation of the Huffman tree, n—ary number systems can be used. The
advantage of n—ary numbering system over binary one is that the messages
can be distributed among more compact symbols, hence the required number of
transmissions per character will be reduced.

In order to come up with a codebook, a dictionary is needed. The frequencies,
so-called probabilities of occurrences of the characters shape the size of the
codebook. In its most frequently adapted style, users prefer to use bulky novels
or texts in order to simulate a more inclusive dictionary.

3.7 Reimbursing the Botmaster

Another important feature of LNBot is the ability of the botmaster to get the in-
vested funds back from C&C servers’ lightning wallets to his/her Bitcoin wallet.
Depending on botmaster’s command propagation activity, C&C servers’ chan-
nels will fill up with funds received from the botmaster. Therefore, in our design,
C&C servers are programmed to send the funds in their channels to an LN node
called collector. Collector is set up by the botmaster as a private LN node which
becomes active only when the C&C servers will send funds to it. Its LN pub-
lic key is stored in C&C servers and thus they can send the funds to collector
through LN using the collector’s public key. In this way, the funds accumulate at
the collector. The botmaster gets the funds accumulated at the collector when
his/her channels starts running out of funds. Botmaster get the funds from col-
lector by closing collector’s channels so that the funds at these channels are
settled at collector’s lightning wallet. Then botmaster sends these funds through
an on-chain Bitcoin transfer to his/her Bitcoin wallet.

4 Proof-of-Concept Implementation

In this section, we demonstrate that an actual implementation of the proposed
LNBot is feasible by presenting a proof-of-concept. For development, we used
1nd (version 0.9.0-beta) which is one of the implementations of LN developed
by Lightning Labs [I5]. LN nodes should interact with a Bitcoin network in
order to run the underlying layer-1 protocols. There are two real environments
where Bitcoin operations take place: Bitcoin Mainnet and Bitcoin Testnet. As
the names suggest, Bitcoin Mainnet is the chain where Bitcoin transfers with
a real monetary value take place. However, in Bitcoin Testnet, Bitcoins do not
have a monetary value. They are only used for testing and development purposes.
Nonetheless, they both provide the same infrastructure and LNBot will definitely
run in the same manner on the Mainnet as it runs on the Testnet.

Thus, we used Bitcoin Testnet for our proof-of-concept development. We
created 100 C&C servers and assessed certain performance characteristics for
command propagation. We created a GitHub page explaining the steps to set up

12 A. Kurt et al.

the C&C serversﬂ The steps include installation of ind & bitcoind, configuring
Ind and bitcoind, and extra configurations to hide the servers in the network
by utilizing private channels. Nevertheless, to confirm that the channel opening
costs and routing fees are exactly same in both Bitcoin Mainnet and Testnet,
we also created 2 nodes on Bitcoin Mainnet. We funded one of the nodes with
0.01 Bitcoin (~$67), created channels and sent payments to the other node. We
observed that the costs and fees are exactly matching to that of Bitcoin Testnet.

Ind has a feature called autopilot which opens channels in an automated man-
ner based on certain initial parameters set in advance [I7]. Our C&C servers on
Bitcoin Testnet employ this functionality of ind to open channels on LN. Using
autopilot, we opened 3 channels per server. Note that this number of channels is
picked based on our experimentation on Bitcoin Testnet on the success of pay-
ments. We wanted to prevent any failures in payments by tuning this parameter.
As mentioned, these 3 channels are all private, created with —private argument,
which do not broadcast themselves to the network. A private channel in LN is
only known by the two peers of the channel.

Ind has an API for communicating with a local ind instance through gRPC [16].
Using the API, we wrote a client that communicated with ind in Python. Partic-
ularly, we wrote 2 Python scripts, one running on the C&C servers and the other
on the botmaster machine. We typed the command we wanted to send to C&C
servers in a terminal in the botmaster machine. The command was processed by
the Python code and sent to the C&C servers as a series of payments.

5 Evaluation and Analysis of LNBot

In this section, we present a detailed cost and time overhead analysis of LNBot.
5.1 Cost Analysis of LNBot Formation

We first analyze the monetary cost of forming LNBot. As noted earlier, we
opened 3 channels per server. The capacity of each channel is 20,000 satoshi
which is the minimum allowable channel capacity in Ind. Therefore, a server
needs 60,000 satoshi for opening these channels. While opening the channels,
there is a small fee paid to Bitcoin miners since channel creations in LN are
on-chain transactions. We showed that, opening a channel in LN can cost as low
as 154 satoshi on both Bitcoin Testnetf] and the MainnetF]

So the total cost of opening 3 channels for a C&C server is 60,462 satoshi.
While 462 satoshi is consumed as fees, the remaining 60,000 satoshi on the
channels is not spent, rather it is just locked in the channels. The botmaster will
get this 60,000 satoshi back after closing the channels. Therefore, funds locked
in the channels are non-recurring investment cost for the formation of LNBot.
Only real associated cost of forming LNBot is the channel opening fees.

2 https://github.com/LightningNetworkBot/LNBot

3 Check LNB6’s channel (1735152493945290752)) opening transaction for instance:
£c46¢99233389d24c41d9517cd503£08265¢517a610570d806e7ccI8bTE7I63b

4 In a similar way, check one of our mainnet node’s channel opening transaction:
1d81b6022{t1472939¢c4db730ca01b82d43b616e757d799acal7ee0db6427520

https://github.com/LightningNetworkBot/LNBot
https://1ml.com/testnet/channel/1735152493945290752
https://blockstream.info/testnet/tx/fc46c99233389d24c4fd9517cd503f08265c517a6f0570d806e7cc98b7f7963b
https://blockstream.info/tx/1d81b6022ff1472939c4db730ca01b82d43b616e757d799aea17ee0db6427520

Title Suppressed Due to Excessive Length 13

Table [1] shows how the costs change when the number of C&C servers is
increased. The increase in the cost is linear and for 100 C&C servers, the on-
chain fees is only 0.000462 Bitcoin ($3 at current Bitcoin price of $6700).

Table 1: Channel Opening Fees for Different Number of C&C Servers

Number of C&C Servers|Channel Opening Fees
10 0.0000462 Bitcoin
25 0.0001155 Bitcoin
50 0.000231 Bitcoin
100 0.000462 Bitcoin

5.2 Cost and Time Analysis of Command Propagation

To assess the command propagation overhead, we sent the following SYN flood-
ing attack command to C&C servers from the botmaster (omitting start and
end of command characters):

sudo hping3 -i ul -S -p 80 -c 10 192.168.1.1

We sent this command using both of the encoding methods we proposed
earlier. For Huffman coding, we compared several different base number systems.
The best result was obtained by using the Quaternary numeral system, the
codebook of which is shown in Table

Table 3: Respective ASCII and Huffman encoding
representation of ‘sudo hping3 -i ul -S -p 80 -c¢ 10
192.168.1.1° command

Command |ASCII Encoding Quaternary
Huffman Encoding
Table 2: Obtained code- ‘sudo ’ 115,117,100,111,322,3,4,2,1,1,2,2,4,2,3,2,1,1
book for Huﬂman Cod_ ‘hpingB’ 1047112,105, 273,1,174,4,174,3,27373
ing _ 110,103,51,32 2,2,3,2,1,2,1,1
s’ 234]'n’ 233[0’ 232[‘W’ 231 il 45,105,32 1314311
T 221y 293 223 201 ul 117,49,32 21,1,121,1
— = — = S 45,83,32 1,3,3,1,1
6’ 214 2 2133’ 212[‘w’ 211 7 15.112.32 1314411
P’ 144) ' 143)°8" 142/ 0’ 141 80 56,48,32 142,141,110
o241 121 13 BT 4 o 45,99,32 1322211
I’ 3 0 49,48,32 1,2,1,4,1,1,1
192.168.1.1 49,57,50,46,49 | 1,2,2,2,1,2,1,3,2,4,1,2,2
54,56,46,49,46,49 | 1,4,1,4,2,2,4,1,2,2,4,1,2
Total Number of 44 108
Payments
Total Cost 2813 215

Cost Analysis: The botmaster spent 2813 satoshi for sending the SYN flooding
command using the ASCII encoding while this cost is only 215 satoshi with the
Huffman coding. Table [3] gives details about the number of payments and how
many satoshi have been sent in each payment. While in both cost cases the
botmaster will be reimbursed at the very end, we would like to note that the
lifetime of the channels is closely related with these costs. In case of the ASCII

14 A. Kurt et al.

encoding, the initial funds will be spent faster and the botmaster needs to re-
configure (or re-balance) the channels for continuous operation of the botnet. In
case of the Huffman coding, this is not the case as the consumption of the channel
funds is much slower. So, we can see that if channel lifetime is an important factor
for the botmaster, the Huffman coding could be preferred. In other words, the
Huffman coding gives the botmaster the ability to perform more attacks without
creating high capacity channels.

However, the situation is reverse in case of routing fees. Table[d]shows how the
routing fees change when the number of C&C servers is increased. The increase
in the routing fees is linear for both the ASCII and Huffman coding. For 100
C&C servers, total routing fee paid is only 0.000176 Bitcoin (~ $1 at current
Bitcoin price of $6700) for ASCII while it is 0.000432 Bitcoin (~ $3 at current
Bitcoin price of $6700) for the Huffman coding. This indicates that despite its
increased routing fees, the Huffman coding is still a viable option for longer
operation of LNBot.

Table 4: Routing Fees for Different Number of C&C Servers

Number of C&C Servers|Routing Fees (ASCII) |Routing Fees (Huffman)
10 0.0000176 Bitcoin 0.0000432 Bitcoin
25 0.000044 Bitcoin 0.000108 Bitcoin
50 0.000088 Bitcoin 0.000216 Bitcoin
100 0.000176 Bitcoin 0.000432 Bitcoin

Time Analysis: The propagation time of a command is calculated by multi-
plying the number of payments with the average delivery time of the payments.
To estimate the average delivery time, we sent 90 key send payments with differ-
ent amounts from botmaster to our C&C servers over LN at random times and
measured the time it takes for payments to reach their destinations. The results
are depicted in Fig. [4

As shown, key send payments took
7 seconds on average to reach their
destinations and the maximum delay 9
was never exceeding 10 seconds. This
delay varies since it depends on the
path being used and the load of each
intermediary node in the LN. We ob-
served that the number of hops for
the payments was 4, which helps to
strengthen unlikability of payments A i aaaasnaacAncas et o
and destinations in case of any pay- Amount of Satoshi
ment analysis in LN. Fig.4: Time for key send payments to

Using an average of 7 seconds, the reach their destinations with varying

total propagation time for the ASCII- satoshi.

encoded payments is 7x44=308 seconds while it is 7x108=756 seconds for the
Huffman coding. The Huffman coding reduces the cost of sending the command,
but increases the communication delays which is not critical in performing the
attack.

10

time (sec)
®

Title Suppressed Due to Excessive Length 15

5.3 Comparison of LNBot with Other Similar Botnets

We also considered other existing botnets that utilize Bitcoin for their command
and control. Using our SYN flooding attack command, we computed their cost
and command propagation times to compare them with LNBot. We also included
their scalability features. Table [5| shows these results.

Table 5: Time, Cost and Scalability Comparison of LNBot with Similar Botnets.

Botnet Cost Time Scalability
Bitcoin Testnet Botnet [10]|51349 satoshi (Testnet)|~ 10 minutes|Low, thousands of bots
Zombiecoin 2.0 [3] 10000 satoshi ~ 10 seconds|Low, thousands of bots
LNBot 10 satoshi ~ 5 minutes | High, millions of bots

As seen, LNBot comes with minimal costs with a reasonable propagation time
for attacks and can scale to millions of nodes with its two-layer architecture.

6 Security & Anonymity Analysis and Countermeasures

In this section, we discuss security properties of LNBot and possible counter-
measures to detect its activities in order to minimize its impacts.

e Taking LN down: Obviously, the simplest way to eliminate LNBot’s activities
is taking down the LN as a whole once there is any suspicion about a botnet.
However, this is very unlikely due to LN being a very resilient decentralized
payment channel network. In addition, today many applications are running on
LN and shutting down may cause a lot of financial loss for numerous stakeholders.
o Compromising and shutting down a CEC Server: In LNBot there are many
C&C servers each of which is controlling a mini-botnet. Given the past experi-
ence with various traditional botnets, it is highly likely that these mini-botnets
will be detected at some point in the future paving the way for also the detection
of a C&C server. This will then result in the revelation of its location/IP address
and eventually physical seizure of the machine by law enforcement. Nevertheless,
the seizure of a C&C server will neither reveal the identity of the LNBot botmas-
ter nor other C&C servers since a C&C server receives the commands through
onion routed payments catered with Sphinx’s secure packet format, which does
not reveal the original sender of the message. Additionally, the communication
between botmaster and C&C servers is 1-way meaning that botmaster can talk
to C&C servers, but servers cannot talk back since the LN address of the botmas-
ter is not known by them. This 1-way communication ensures that the identity
of the botmaster will be kept secret at all times.

Note that since the C&C servers hold the LN public key of the collector, it
will also be revealed when a C&C server is compromised. However, since the
collector node’s channels are all private, its IP address or location is not known
by the C&C servers. Therefore, learning the LN public key of the collector node
does not help locating the collector node physically. The only possibility is to
continue monitoring a C&C server when it is compromised and as soon as it
makes a payment (to collector), we can try to do a timing analysis on certain
random nodes that are under our control to determine if one of them would
be forwarding the same amount of money and happens to have a channel with

16 A. Kurt et al.

the collector node. In that case, that node will know the IP address of the
collector since they have a channel. While this possibility is very low, even if
we are successful, the collector can always hide its IP address through certain
mechanisms such as VPN or Tor. Eventually, we can see that taking down a
single C&C server shuts down the botnet partially resulting in less damage to
victims.

e Payment Flow Timing Analysis for Detecting the Botmaster: As explained in
Section [2.5] the intermediary nodes in a payment path do not know the origin
of the payment; therefore they cannot distinguish between the botmaster and
a regular forwarding node on the payment path unless the payment path just
consists of 1-hop [6]. In our tests, we observed that our payments took 4 hops
to reach C&C servers. Therefore, payment analysis for such multiple hops is a
challenge. However, it can help increase our chances to detect the botmaster.
To further investigate this attack
scenario, a topology of 8 nodes
was created on Bitcoin Testnet as
shown in Fig. f] We assume that
Node A, Node D and the C&C
server are compromised and thus
we monitored their payments. In
this setup, a 100 satoshi pay-
ment was sent from the botmaster
to the C&C server through hops
Node A, Node B, and Node C and
the payment was monitored at
Node A. By monitoring the node,
we got the payment forwarding in-

formation shown in Fig. [6] Fig. 5: The payments that are forwarded by

In the same way, another 50 Node A and Node D are monitored by an ob-
satoshi payment was sent from Server and the C&C server is compromised.
the botmaster to the same C&(C Red arrows show the payment channels be-
server following hops Node D, tween the nodes and the green arrows show

Node E, and Node F and the pay- the flow of the payment.

ment was monitored at Node D.

Similar payment forwarding information is obtained at node D. Here, particu-
larly important information for us is the timestamp of the payment, and the
chan_id_in and the chan_id_out arguments which represent the ID of the pay-
ment channels that carry the payment in and out from Node A. We can query
these channel IDs to learn the public keys of the nodes at both ends of the chan-
nel by running Incli getchaninfo chan_id. Obtained LN public keys at Node A,
in this case, belong to potential botmaster and Node B. In the same way, LN
public keys of potential botmaster and Node E is obtained at Node D. After the
payment is observed at Node A, payment with the same amount was observed
at the C&C server. We now correlated these two payments (i.e., timing analysis)
and suspected that the sender to Node A (or D) can be a potential botmaster.

Title Suppressed Due to Excessive Length 17

Obviously, there is no guarantee for this (e.g., imagine a different topology where
real botmaster is 2 more hops away). We need to collect more data from many
compromised nodes and continue this analysis for a long time. To increase the
chances, well-connected LN nodes could be requested to cooperate in case of law
enforcement investigation to share the timing of payments passing from them.
e Poisoning Attack: Another ef-

"forwarding_events": [fective way to counter the bot-
{ "timestamp": "1579043693", master is through message poison-
"chan_id_in": "1826219544504369152", ing. Basically, once a C&C server
:gt‘ﬁtni—r'g?(,’,‘it(;i:1826219544504434688"' is compromised, its public keys
"amt out™: "100", will be known. Using these pub-
"fee": "1", lic keys one can send payments

"fee_msat": "1000",

“am inmsat": *101000", to C&C servers to corrupt the
"amt_out_msat": "100000" messages sent by the botmaster
}H at the right time. There is cur-

Fig. 6: The payment forwarding information rently no authentication mecha-

stored on Node A’s local database in JSON nism that can be used by the bot-

format as the output of the command Incli master Wlt,h(,)ut being exposed to
fuwdinghistory prevent this issue. Recall that the

commands are encoded in a series
of payments and when a different payment is sent during a command transmis-
sion, it will corrupt the syntax and thus eventually there will not be any impact.
The right time will be decided by listening to the payments and packets arriving
at the C&C server. The disadvantage of this, however, is that one needs to pay
for those payments. Nonetheless, this can be an effective way to continue engag-
ing with the botmaster for detection purposes rather than just shutting down
the C&C server while rendering any attack impossible.

e Analysis of On-chain Transactions: Another countermeasure could be through
analyzing the on-chain funding transfers of C&C servers (i.e., channel creation
transactions stored on blockchain). For such forensic analysis, the Bitcoin ad-
dresses of the C&C servers should be known. As with many other real-life bot-
nets, botmasters generally use Bitcoin mixers to hide the source of the Bitcoins.
Usage of such mixers makes it very hard to follow the real source of the Bitcoins
since the transactions are mixed between the users using the mixer service. Even
though the chances of finding the identity of the botmaster through this analysis
is low, it can provide some useful information to law enforcement.

7 Related Work

Botnets have been around for a long time and there have been even surveys
classifying them [BJI2]. While early botnets used IRC, later botnets focused on
P2P C&C for resiliency. Furthermore, Tor has also been used for a botnet C&C
but it is shown that botnet activity over Tor can be exposed due to the recogniz-
able patterns in the C&C communication [§]. Our proposed LNBot falls under
covert botnets which became popular much later. As an example, Nagaraja et al.
proposed Stegobot, a covert botnet using social media networks as a command
and control channel [I9]. Some work has been done by Natarajan et al. to detect

18 A. Kurt et al.

Stegobot [20]. Pantic et al. proposed a covert botnet command and control using
Twitter [23]. Tsiatsikas et al. proposed SDP-Based Covert Channel for Botnet
Communication [30]. Calhoun et al. presented a MAC layer covert channel based
on WiFi [7].

Recent covert botnets started to utilize Blockchain although these are very
few. For instance, Roffel et al. [27] came up with the idea of controlling a com-
puter worm using the Bitcoin blockchain. [29] discusses how botnet resiliency
can be enhanced using private blockchains. Pirozzi et al. presented the use of
blockchain as a command and control center for a new generation botnet [25].
Similarly, ChainChannels [I1] utilizes Bitcoin to disseminate C&C messages to
the bots. These works are different from our architecture as they suffer from the
issues of high latency and public announcement of commands. There are also
Unblockable Chains [32], and BOTRACT [18], which are Ethereum-based bot-
net command and control infrastructures that suffer from anonymity issues since
the commands are publicly recorded on the blockchain. Baden et al. [4] proposed
a botnet C&C scheme utilizing Ethereum’s Whisper messaging. However, it is
still possible to blacklist the topics used by the botmaster. Additionally, there is
not a proof of concept implementation of the proposed approach yet, therefore
it is unknown if the botnet can successfully be deployed or not.

The closest work to ours are ZombieCoin [2] and Bitcoin Testnet botnet [10].
ZombieCoin uses Bitcoin transaction spreading mechanism as the C&C commu-
nication infrastructure. In this study, the botmaster announces the commands
to the bots in terms of legitimate Bitcoin transactions on the Bitcoin network.
Then, any legitimate Bitcoin nodes that receive these transactions check the cor-
rectness of the input address, the digital signature, and in&out Bitcoin amounts
of the transaction. The bots extract the concealed commands from these trans-
actions. However, this scheme has several drawbacks: First, the authors assumed
that the bots identify related transactions from the botmaster’s Bitcoin address,
which Bitcoin miners can blacklist. Second, as in the case of other blockchain-
based botnets, because all transactions are publicly announced, it leaves a pub-
lic record about the botnet activity. To resolve this problem, in a further study
they also proposed to employ subliminal channels [3] to cover the botmaster.
However, subliminal channels require a lot of resources to calculate required sig-
natures which is computationally expensive and not practical to use on a large
scale.

Bitcoin Testnet botnet is a recently proposed botnet [10], where Bitcoin Test-
net is utilized for controlling the botnet. Even though their C&C communication
is encrypted, non-standard Bitcoin transactions used for communication exposes
the botnet activity. Once the botnet is detected, the messages coming from the
botmaster can be prevented from spreading, consequently stopping the botnet
activity. Additionally, it is possible for Bitcoin developers to reset the current
Bitcoin Testnet (i.e., Testnet3) and create a new Bitcoin testnet (e.g., Testnet4)
to stop the botnet completely.

In contrast, our work is based on legitimate LN payments and does not re-
quire any additional computation to hide the commands. Also, these commands

Title Suppressed Due to Excessive Length 19

are not announced publicly. Moreover, LNBot offers very unique advantage for
a botnet that does not contain any direct relation with C&C. This means even
C&C itself is not aware of the botmaster due to LN’s anonymous multi-hop struc-
ture. As a result, LNBot does not carry any mentioned disadvantages through its
two-layer hybrid architecture and provides ultra scalability and high anonymity
compared to others.

8 Conclusion

LN has been formed as a new payment network to address the drawbacks
of Bitcoin transactions in terms of time and cost. In addition to relationship
anonymity, LN significantly reduces fees by performing off-chain transactions.
This provides a perfect opportunity for covert communications as no transac-
tions are recorded in the blockchain. Therefore, in this paper, we proposed a
new covert hybrid botnet by utilizing the LN payment network formed for Bit-
coin operations. The idea was to control the C&C servers through messages
that are sent in the form of payments through the LN. The proof-of-concept
implementation of this architecture indicated that LNBot can be successfully
created and commands for attacks can be sent to C&C servers through LN with
negligible costs yet with very high anonymity. To minimize LNBot’s impact, we
offered several countermeasures that include the possibility of searching for the
botmaster.

References

1. 1ml.com: Lightning network search and analysis engine (2019), https://1ml.com/

2. Ali, S.T., McCorry, P., Lee, P.H.J., Hao, F.: Zombiecoin: powering next-generation
botnets with bitcoin. In: International Conference on Financial Cryptography and
Data Security. pp. 34-48. Springer (2015)

3. Ali, S.T., McCorry, P., Lee, P.H.J., Hao, F.: Zombiecoin 2.0: managing next-
generation botnets using bitcoin. International Journal of Information Security
17(4), 411-422 (2018)

4. Baden, M., Torres, C.F., Pontiveros, B.B.F., State, R.: Whispering botnet com-
mand and control instructions. In: 2019 Crypto Valley Conference on Blockchain
Technology (CVCBT). pp. 77-81. IEEE (2019)

5. Bailey, M., Cooke, E., Jahanian, F., Xu, Y., Karir, M.: A survey of botnet tech-
nology and defenses. In: Cybersecurity Applications & Technology Conference For
Homeland Security, CATCH’09. pp. 299-304. IEEE (2009)

6. Béres, F., Seres, I.A., Benczur, A.A.: A cryptoeconomic traffic analysis of bitcoins
lightning network. arXiv preprint arXiv:1911.09432 (2019)

7. Calhoun Jr, T.E., Cao, X., Li, Y., Beyah, R.: An 802.11 mac layer covert channel.
Wireless Communications and Mobile Computing 12(5), 393-405 (2012)

8. Casenove, M., Miraglia, A.: Botnet over tor: The illusion of hiding. In: 2014 6th
International Conference On Cyber Conflict (CyCon 2014). pp. 273-282. IEEE
(2014)

9. Danezis, G., Goldberg, I.: Sphinx: A compact and provably secure mix format. In:
2009 30th IEEE Symposium on Security and Privacy. pp. 269-282. IEEE (2009)

10. Franzoni, F., Abellan, I., Daza, V.: Leveraging bitcoin testnet for bidirectional bot-
net command and control systems. In: Financial Cryptography and Data Security
2020

https://1ml.com/

20

11.

12.
13.
14.
15.
16.
17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

A. Kurt et al.

Frkat, D., Annessi, R., Zseby, T.: Chainchannels: Private botnet communi-
cation over public blockchains. In: ITEEE ITHINGS-GREENCOM-CPSCOM-
SMARTDATA 2018. pp. 1244-1252. IEEE (2018)

Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B., Dagon, D.: Peer-to-peer
botnets: Overview and case study. HotBots 7, 1-1 (2007)

Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proceedings of the IRE 40(9), 1098-1101 (1952)

Labs, L.: Bolt #4: Onion routing protocol (2019), https://github.com/
lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md

Labs, L.: Lightning network daemon (2019), https://lightning.engineering
Labs, L.: Lnd grpc api reference (2019), https://api.lightning.community/
Labs, L.: Sample Ind.conf (2019), https://github.com/lightningnetwork/1lnd/
blob/master/sample-1nd.conf

Malaika, M.: Botract (2017), |https://sector.ca/wp-content/uploads/
presentations17/Majid-Malaika-Botract_SecTor.pdf

Nagaraja, S., Houmansadr, A., Piyawongwisal, P., Singh, V., Agarwal, P., Borisov,
N.: Stegobot: a covert social network botnet. In: International Workshop on Infor-
mation Hiding. pp. 299-313. Springer (2011)

Natarajan, V., Sheen, S., Anitha, R.: Multilevel analysis to detect covert social bot-
net in multimedia social networks. The Computer Journal 58(4), 679687 (2015)
Ollmann, G.: Botnet communication topologies. Retrieved September 30, 2009
(2009)

Osuntokun, O.: New draft sphinx send mode for spontaneous payments (2019),
https://github.com/lightningnetwork/1lnd/pull/2455

Pantic, N.,; Husain, M.I.: Covert botnet command and control using twitter. In:
Proceedings of the 31st annual computer security applications conference. pp. 171—
180. ACM (2015)

Pass, R., et al.: Micropayments for decentralized currencies. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security. pp.
207-218. ACM (2015)

Pirozzi, A., Paganini, P.: Experts presented botchain, the first fully functional
botnet built upon the bitcoin protocol (2018), https://securityaffairs.co/
wordpress/77395/malware/botchain-botnet-bitcoin-protocol.html

Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments (2015), https://lightning.network/lightning-network-paper.pdf
Roffel, D., Garrett, C.: A novel approach for computer worm control using decen-
tralized data structures (2014)

Silva, S.S., Silva, R.M., Pinto, R.C., Salles, R.M.: Botnets: A survey. Computer
Networks 57(2), 378-403 (2013)

Sweeny, J.: Botnet resiliency via private blockchains (2017),
https://www.sans.org/reading-room/whitepapers/covert/
botnet-resiliency-private-blockchains-38050

Tsiatsikas, Z., Anagnostopoulos, M., Kambourakis, G., Lambrou, S., Geneiatakis,
D.: Hidden in plain sight. sdp-based covert channel for botnet communication.
In: International Conference on Trust and Privacy in Digital Business. pp. 48-59.
Springer (2015)

Wang, P., Wu, L., Aslam, B., Zou, C.C.: A systematic study on peer-to-peer bot-
nets. In: 2009 Proceedings of 18th International Conference on Computer Commu-
nications and Networks. pp. 1-8. IEEE (2009)

Zohar, O.: Unblockable chains (2018), https://github.com/platdrag/
UnblockableChains

https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://lightning.engineering
https://api.lightning.community/
https://github.com/lightningnetwork/lnd/blob/master/sample-lnd.conf
https://github.com/lightningnetwork/lnd/blob/master/sample-lnd.conf
https://sector.ca/wp-content/uploads/presentations17/Majid-Malaika-Botract_SecTor.pdf
https://sector.ca/wp-content/uploads/presentations17/Majid-Malaika-Botract_SecTor.pdf
https://github.com/lightningnetwork/lnd/pull/2455
https://securityaffairs.co/wordpress/77395/malware/botchain-botnet-bitcoin-protocol.html
https://securityaffairs.co/wordpress/77395/malware/botchain-botnet-bitcoin-protocol.html
https://lightning.network/lightning-network-paper.pdf
https://www.sans.org/reading-room/whitepapers/covert/botnet-resiliency-private-blockchains-38050
https://www.sans.org/reading-room/whitepapers/covert/botnet-resiliency-private-blockchains-38050
https://github.com/platdrag/UnblockableChains
https://github.com/platdrag/UnblockableChains

