Skip to main content

Deep Learning Enabled Reliable Identity Verification and Spoofing Detection

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12384))

  • 2815 Accesses

Abstract

Identity spoofing is one of the severe threats in Cyber-Physical Systems (CPS). These attacks can cause hazardous issues if they occur in Air Traffic Control (ATC) or other safety-critical systems. For example, a malicious UAV (Unmanned Aerial Vehicle) could easily impersonate a legitimate aircraft’s identifier to trespass controlled airspace or broadcast falsified information to disable the airspace operation. In this paper, we propose a joint solution of identity verification and spoofing detection in ATC with assured performances. First, we use an enhanced Deep Neural Network with a zero-bias dense layer with an interpretable mechanism. Second, based on the enhanced Deep Neural Network, we reliably verify airborne targets’ identity with the capability of detecting spoofing attacks. Third, we provide a continual learning paradigm to enable the dynamic evolution of the Deep Neural Network. Our approaches are validated using real Automatic dependent surveillance–broadcast (ADS–B) signals and can be generalized to secure other safety-critical CPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Butun, I., Österberg, P., Song, H.: Security of the Internet of Things: vulnerabilities, attacks, and countermeasures. IEEE Commun. Surv. Tutorials 22(1), 616–644 (2020)

    Article  Google Scholar 

  2. Cai, Z., He, Z.: Trading private range counting over big IoT data. In: IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 144–153. IEEE (2019)

    Google Scholar 

  3. Cai, Z., He, Z., Guan, X., Li, Y.: Collective data-sanitization for preventing sensitive information inference attacks in social networks. IEEE Trans. Dependable Secure Comput. 15(4), 577–590 (2016)

    Google Scholar 

  4. Cai, Z., Zheng, X.: A private and efficient mechanism for data uploading in smart cyber-physical systems. IEEE Trans. Network Sci. Eng. 7, 766–775 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cai, Z., Zheng, X., Yu, J.: A differential-private framework for urban traffic flows estimation via taxi companies. IEEE Trans. Ind. Inf. 15(12), 6492–6499 (2019)

    Article  Google Scholar 

  6. Chen, S., Zheng, S., Yang, L., Yang, X.: Deep learning for large-scale real-world ACARS and ADS-B radio signal classification. arXiv preprint arXiv:1904.09425 (2019)

  7. Costin, A., Francillon, A.: Ghost in the air (traffic): on insecurity of ADS-B protocol and practical attacks on ADS-B devices. Black Hat, USA, pp. 1–12 (2012)

    Google Scholar 

  8. Ghose, N., Lazos, L.: Verifying ads-b navigation information through doppler shift measurements. In: IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), pp. 4A2-1. IEEE (2015)

    Google Scholar 

  9. Huang, G., Yuan, Y., Wang, X., Huang, Z.: Specific emitter identification based on nonlinear dynamical characteristics. Can. J. Electri. Comput. Eng. 39(1), 34–41 (2016)

    Article  Google Scholar 

  10. Huszár, F.: Note on the quadratic penalties in elastic weight consolidation. In: Proceedings of the National Academy of Sciences, p. 201717042 (2018)

    Google Scholar 

  11. Jeschke, S., Brecher, C., Song, H., Rawat, D.B. (eds.): Industrial Internet of Things. SSWT. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42559-7

    Book  Google Scholar 

  12. Leonardi, M.: ADS-B anomalies and intrusions detection by sensor clocks tracking. IEEE Trans. Aerosp. Electron. Syst. 55(5), 2370–2381 (2018)

    Article  Google Scholar 

  13. Leonardi, M., Di Fausto, D.: ADS-B signal signature extraction for intrusion detection in the air traffic surveillance system. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 2564–2568. IEEE (2018)

    Google Scholar 

  14. Leonardi, M., Di Gregorio, L., Di Fausto, D.: Air traffic security: aircraft classification using ADS-B message’s phase-pattern. Aerospace 4(4), 51 (2017)

    Article  Google Scholar 

  15. Liang, Y., Cai, Z., Yu, J., Han, Q., Li, Y.: Deep learning based inference of private information using embedded sensors in smart devices. IEEE Netw. 32(4), 8–14 (2018)

    Article  Google Scholar 

  16. Liu, G., Zhang, R., Wang, C., Liu, L.: Synchronization-free gps spoofing detection with crowdsourced air traffic control data. In: 2019 20th IEEE International Conference on Mobile Data Management (MDM), pp. 260–268. IEEE (2019)

    Google Scholar 

  17. Liu, Y., Wang, J., Song, H., Li, J., Yuan, J.: Blockchain-based secure routing strategy for airborne mesh networks. In: 2019 IEEE International Conference on Industrial Internet (ICII), pp. 56–61. IEEE (2019)

    Google Scholar 

  18. Lv, Z., Song, H., Basanta-Val, P., Steed, A., Jo, M.: Next-generation big data analytics: state of the art, challenges, and future research topics. IEEE Trans. Ind. Inf. 13(4), 1891–1899 (2017)

    Article  Google Scholar 

  19. Monteiro, M., Barreto, A., Kacem, T., Carvalho, J., Wijesekera, D., Costa, P.: Detecting malicious ADS-B broadcasts using wide area multilateration. In: 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), pp. 4A3-1. IEEE (2015)

    Google Scholar 

  20. Pang, J., Huang, Y., Xie, Z., Han, Q., Cai, Z.: Realizing the heterogeneity: a self-organized federated learning framework for IoT. IEEE Internet Things J. 1 (2020). https://doi.org/10.1109/JIOT.2020.3007662

  21. Schäfer, M., Leu, P., Lenders, V., Schmitt, J.: Secure motion verification using the doppler effect. In: Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks, pp. 135–145. ACM (2016)

    Google Scholar 

  22. Sun, J.: An open-access book about decoding mode-s and ADS-B data, May 2017. https://mode-s.org/

  23. Sun, Y., Song, H., Jara, A.J., Bie, R.: Internet of things and big data analytics for smart and connected communities. IEEE Access 4, 766–773 (2016)

    Article  Google Scholar 

  24. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  25. Wang, J., et al.: Fountain code enabled ads-b for aviation security and safety enhancement. In: 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC), pp. 1–7. IEEE (2018)

    Google Scholar 

  26. Yang, A., Tan, X., Baek, J., Wong, D.S.: A new ADS-B authentication framework based on efficient hierarchical identity-based signature with batch verification. IEEE Trans. Serv. Comput. 10(2), 165–175 (2015)

    Article  Google Scholar 

  27. Yang, H., Zhou, Q., Yao, M., Lu, R., Li, H., Zhang, X.: A practical and compatible cryptographic solution to ADS-B security. IEEE Internet Things J. 6(2), 3322–3334 (2018)

    Article  Google Scholar 

  28. Ying, X., Mazer, J., Bernieri, G., Conti, M., Bushnell, L., Poovendran, R.: Detecting ADS-B spoofing attacks using deep neural networks. arXiv preprint arXiv:1904.09969 (2019)

Download references

Acknowledgement

This research was partially supported through Embry-Riddle Aeronautical University’s Faculty Innovative Research in Science and Technology (FIRST) Program and the National Science Foundation under Grant No. 1956193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houbing Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Wang, J., Niu, S., Song, H. (2020). Deep Learning Enabled Reliable Identity Verification and Spoofing Detection. In: Yu, D., Dressler, F., Yu, J. (eds) Wireless Algorithms, Systems, and Applications. WASA 2020. Lecture Notes in Computer Science(), vol 12384. Springer, Cham. https://doi.org/10.1007/978-3-030-59016-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59016-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59015-4

  • Online ISBN: 978-3-030-59016-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics