Abstract
With increased interoperability of cyber-physical systems (CPSs), security becomes increasingly critical for many of these systems. We know mode switching from domains like aviation and automotive, and we imagine to use this mechanism for the development of resilient systems that continue to function correctly even if under malicious attack. If vulnerabilities are detected or even known, modes can be switched to reduce the attack surface and to minimize attackers’ range of activity. We propose to engineer CPSs with multi-modal software architectures to overcome the interval between the time when zero-day vulnerabilities become known and the time when corresponding updates become available. Thus, affected companies, operators and people will be able to protect themselves and their customers without having to wait for security updates. This paper presents first findings of a systematic literature review (SLR) on mode switching from a security perspective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abeni, L., Buttazzo, G.: Hierarchical QoS management for time sensitive applications. In: Proceedings Seventh IEEE Real-Time Technology and Applications Symposium, pp. 63–72 (2001). https://doi.org/10.1109/RTTAS.2001.929866
Andersson, B.: Uniprocessor EDF scheduling with mode change. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 572–577. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92221-6_43
Bailey, C.: Hard real time operating system kernel: investigation of mode change, task 14 deliverable on estsec contract 9198/90/nl. sf, Technical report, British Aerospace Systems Ltd. (1993)
Block, A., Anderson, J.H., Devi, U.C.: Task reweighting under global scheduling on multiprocessors. Real-Time Syst. 39(1), 123–167 (2008). https://doi.org/10.1007/s11241-007-9041-2
Borde, E., Haik, G., Pautet, L.: Mode-based reconfiguration of critical software component architectures. In: Automation Test in Europe Conference Exhibition 2009 Design, pp. 1160–1165 (2009). https://doi.org/10.1109/DATE.2009.5090838
Burns, A., Davis, R.I., Baruah, S., Bate, I.: Robust mixed-criticality systems. IEEE Trans. Comput. 67(10), 1478–1491 (2018). https://doi.org/10.1109/TC.2018.2831227
Capota, E.A., Stangaciu, C.S., Micea, M.V., Curiac, D.I.: Towards mixed criticality task scheduling in cyber physical systems: challenges and perspectives. J. Syst. Softw. 156, 204–216 (2019). https://doi.org/10.1016/j.jss.2019.06.099
Chen, T., Phan, L.T.X.: SafeMC: a system for the design and evaluation of mode-change protocols. In: 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pp. 105–116 (2018). https://doi.org/10.1109/RTAS.2018.00021
Firesmith, D.: System resilience: what exactly is it? (2019). https://insights.sei.cmu.edu/sei_blog/2019/11/system-resilience-what-exactly-is-it.html
Hang, Y., Hansson, H.: Handling emergency mode switch for component-based systems. In: 2014 21st Asia-Pacific Software Engineering Conference, vol. 1, pp. 151–158 (2014). https://doi.org/10.1109/APSEC.2014.32
Hanninen, K., Maki-Turja, J., Nolin, M., Lindberg, M., Lundback, J., Lundback, K.L.: The Rubus component model for resource constrained real-time systems. In: 2008 International Symposium on Industrial Embedded Systems, pp. 177–183 (2008). https://doi.org/10.1109/SIES.2008.4577697
Hansson, H., AAkerholm, M., Crnkovic, I., Torngren, M.: SaveCCM - a component model for safety-critical real-time systems. In: Proceedings. 30th Euromicro Conference, 2004, ppD. 627–635 (2004). https://doi.org/10.1109/EURMIC.2004.1333431
Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: a time-triggered language for embedded programming. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 166–184. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45449-7_12
Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for software architectures. In: Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 113–126. Springer, Heidelberg (2006). https://doi.org/10.1007/11966104_9
Ke, X., Sierszecki, K., Angelov, C.: COMDES-II: a component-based framework for generative development of distributed real-time control systems. In: 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2007), pp. 199–208 (2007). https://doi.org/10.1109/RTCSA.2007.29
Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering (version 2.3). Technical report, EBSE-2007-01, Keele University and Durham University (2007)
Maraninchi, F., Rémond, Y.: Mode-automata: about modes and states for reactive systems. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 185–199. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053571
Maraninchi, F., Rémond, Y.: Mode-Automata: a new domain-specific construct for the development of safe critical systems. Sci. Comput. Program. 46(3), 219–254 (2003). https://doi.org/10.1016/S0167-6423(02)00093-X
Martins, P., Burns, A.: On the meaning of modes in uniprocessor real-time systems. In: Proceedings of the 2008 ACM Symposium on Applied Computing, SAC 2008, pp. 324–325. Association for Computing Machinery (2008). https://doi.org/10.1145/1363686.1363770
McGraw, G.: Software security. IEEE Secur. Priv. 2, 80–83 (2004)
Meumeu Yomsi, P., Nelis, V., Goossens, J.: Scheduling multi-mode real-time systems upon uniform multiprocessor platforms. In: 15th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2010), pp. 1–8 (2010). https://doi.org/10.1109/ETFA.2010.5641275
Nelis, V., Andersson, B., Marinho, J., Petters, S.M.: Global-EDF scheduling of multimode real-time systems considering mode independent tasks. In: 2011 23rd Euromicro Conference on Real-Time Systems, pp. 205–214 (2011). https://doi.org/10.1109/ECRTS.2011.27
Nelis, V., Goossens, J., Andersson, B.: Two protocols for scheduling multi-mode real-time systems upon identical multiprocessor platforms. In: Proceedings - Euromicro Conference on Real-Time Systems, pp. 151–160 (2009). https://doi.org/10.1109/ECRTS.2009.27
van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The koala component model for consumer electronics software. Computer 33(3), 78–85 (2000). https://doi.org/10.1109/2.825699
Pedro, P., Burns, A.: Schedulability analysis for mode changes in flexible real-time systems. In: Proceeding. 10th EUROMICRO Workshop on Real-Time Systems (Cat. No.98EX168), pp. 172–179 (1998). https://doi.org/10.1109/EMWRTS.1998.685082
Pedro, P.S.M.: Schedulability of mode changes in flexible real-time distributed systems. Ph.D. thesis, University of York, Department of Computer Science (1999)
Petticrew, M., Roberts, H.: Systematic Reviews in the Social Sciences: A Practical Guide, vol. 11. Wiley (2006). https://doi.org/10.1002/9780470754887
Phan, L.T., Lee, I.: Towards a compositional multi-modal framework for adaptive cyber-physical systems. In: in Proceedings of the 17th International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 67–73. IEEE (2011). https://doi.org/10.1109/RTCSA.2011.82
Rao, A., Carreón, N., Lysecky, R., Rozenblit, J., Sametinger, J.: Resilient security of medical cyber-physical systems. In: Anderst-Kotsis, G., et al. (eds.) DEXA 2019. CCIS, vol. 1062, pp. 95–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27684-3_13
Rao, A., Rozenblit, J., Lysecky, R., Sametinger, J.: Trustworthy multi-modal framework for life-critical systems security. In: Proceedings of the Annual Simulation Symposium, ANSS 2018, pp. 1–9. Society for Computer Simulation International (2018)
Real, J.: Protocolos de cambio de modo para sistemas de tiempo real (mode change protocols for real time systems). Ph.D. thesis, Universitat Politècnica de València (2000). https://dialnet.unirioja.es/servlet/tesis?codigo=8892
Real, J., Crespo, A.: Mode change protocols for real-time systems: a survey and a new proposal. Real-Time Syst. 26(2), 161–197 (2004). https://doi.org/10.1023/B:TIME.0000016129.97430.c6
Resmerita, S., Derler, P., Pree, W.: Timing Definition Language (TDL) Modeling in Ptolemy II. Technical report 21, Department of Computer Science, University of Salzburg (2020)
Sametinger, J., Steinwender, C.: Resilient context-aware medical device security. In: International Conference on Computational Science and Computational Intelligence, Symposium on Health Informatics and Medical Systems (CSCI-ISHI), pp. 1775–1778 (2017). https://doi.org/10.1109/CSCI.2017.310. http://americancse.org/events/csci2017/Symposiums/csci-ishi
Schoeberl, M.: Mission modes for safety critical Java. In: Obermaisser, R., Nah, Y., Puschner, P., Rammig, F.J. (eds.) SEUS 2007. LNCS, vol. 4761, pp. 105–113. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75664-4_11
Sha, L., Goodenough, J.B.: Real-time scheduling theory and Ada. Computer 23(4), 53–62 (1990). https://doi.org/10.1109/2.55469
Sha, L., Rajkumar, R., Lehoczky, J., Ramamritham, K.: Mode change protocols for priority-driven preemptive scheduling. Real-Time Syst. 1(3), 243–264 (1989). https://doi.org/10.1007/BF00365439
Shih, C.S., Yang, C.M., Su, W.L., Tsung, P.K.: OSAMIC: online schedulability analysis of real-time mode change on heterogeneous multi-core platforms. In: Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems, RACS 2018, pp. 205–212. ACM (2018). https://doi.org/10.1145/3264746.3264755
Sundar, V.K., Easwaran, A.: A practical degradation model for mixed-criticality systems. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 171–180 (2019). https://doi.org/10.1109/ISORC.2019.00040
Søndergaard, H., Ravn, A.P., Thomsen, B., Schoeberl, M.: A practical approach to mode change in real-time systems. Technical report 08–001, Department of Computer Science, Aalborg University (2008)
Tindell, K.W., Burns, A., Wellings, A.J.: Mode changes in priority pre-emptively scheduled systems. In: Proceedings of the Real Time Systems Symposium, pp. 100–109 (1992)
Tindell, K., Alonso, A.: A very simple protocol for mode changes in priority preemptive systems. Technical report, Universidad Politécnica de Madrid (1996)
Tiwari, A., et al.: Safety envelope for security. In: Proceedings of the 3rd International Conference on High Confidence Networked Systems, HiCoNS 2014, pp. 85–94. Association for Computing Machinery (2014). https://doi.org/10.1145/2566468.2566483
Acknowledgement
This work has partially been supported by the LIT Secure and Correct Systems Lab funded by the State of Upper Austria.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Riegler, M., Sametinger, J. (2020). Mode Switching from a Security Perspective: First Findings of a Systematic Literature Review. In: Kotsis, G., et al. Database and Expert Systems Applications. DEXA 2020. Communications in Computer and Information Science, vol 1285. Springer, Cham. https://doi.org/10.1007/978-3-030-59028-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-59028-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59027-7
Online ISBN: 978-3-030-59028-4
eBook Packages: Computer ScienceComputer Science (R0)