Abstract
Since its introduction in the 1990s, association rule mining(ARM) has been proven as one of the essential concepts in data mining; both in practice as well as in research. Discretization is the only means to deal with numeric target column in today’s association rule mining tools. However, domain experts and decision-makers are used to argue in terms of mean values when it comes to numeric target values. In this paper, we provide a tool that reports mean values of a chosen numeric target column concerning all possible combinations of influencing factors – so-called grand reports. We give an in-depth explanation of the functionalities of the proposed tool. Furthermore, we compare the capabilities of the tool with one of the leading association rule mining tools, i.e., RapidMiner. Moreover, the study delves into the motivation of grand reports and offers some useful insight into their theoretical foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pp. 207–216 (1993)
Cox, M.T., Funk, P., Begum, S. (eds.): ICCBR 2018. LNCS (LNAI), vol. 11156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2
Draheim, D.: Generalized Jeffrey Conditionalization: A Frequentist Semantics of Partial Conditionalization. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69868-7
Hartmann, S., Josef, K., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2019. LNCS, vol. 11706. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27615-7
Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1022–1027 (1993)
Garcia, S., Luengo, J., Sáez, J.A., Lopez, V., Herrera, F.: A survey of discretization techniques: taxonomy and empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 25(4), 734–750 (2012)
Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. (CSUR) 38(3), 9-es (2006)
Han, J., Kamber, M.: Data Mining Concepts and Techniques, pp. 335–391. San Francisco (2001)
Hornik, K., Grün, B., Hahsler, M.: arules-a computational environment for mining association rules and frequent item sets. J. Stat. Softw. 14(15), 1–25 (2005)
Kumbhare, T.A., Chobe, S.V.: An overview of association rule mining algorithms. Int. J. Comput. Sci. Inf. Technol. 5(1), 927–930 (2014)
Moreland, K., Truemper, K.: Discretization of target attributes for subgroup discovery. In: Perner, P. (ed.) MLDM 2009. LNCS (LNAI), vol. 5632, pp. 44–52. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03070-3_4
Srikant, R., Agrawal, R.: Mining generalized association rules. Future Generation Comput. Syst. 13(2–3), 161–180 (1997)
Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right objective measure for association analysis. Inf. Syst. 29(4), 293–313 (2004)
Acknowledgements
This work has been conducted in the project “ICT programme” which was supported by the European Union through the European Social Fund.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Arakkal Peious, S., Sharma, R., Kaushik, M., Shah, S.A., Yahia, S.B. (2020). Grand Reports: A Tool for Generalizing Association Rule Mining to Numeric Target Values. In: Song, M., Song, IY., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2020. Lecture Notes in Computer Science(), vol 12393. Springer, Cham. https://doi.org/10.1007/978-3-030-59065-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-59065-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59064-2
Online ISBN: 978-3-030-59065-9
eBook Packages: Computer ScienceComputer Science (R0)