Abstract
Sequential pattern mining is an interesting research area with broad range of applications. Most prior research on sequential pattern mining has considered point-based data where events occur instantaneously. However, in many application domains, events persist over intervals of time of varying lengths. Furthermore, traditional frameworks for sequential pattern mining assume all events have the same weight or utility. This simplifying assumption neglects the opportunity to find informative patterns in terms of utilities, such as cost. To address these issues, we incorporate the concept of utility into interval-based sequences and define a framework to mine high utility patterns in interval-based sequences i.e., patterns whose utility meets or exceeds a minimum threshold. In the proposed framework, the utility of events is considered while assuming multiple events can occur coincidentally and persist over varying periods of time. An algorithm named High Utility Interval-based Pattern Miner (HUIPMiner) is proposed and applied to real datasets. To achieve an efficient solution, HUIPMiner is augmented with a pruning strategy. Experimental results show that HUIPMiner is an effective solution to the problem of mining high utility interval-based sequences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Patel, D., Hsu, W., Lee, M.L.: Mining relationships among interval-based events for classification. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, New York, NY, USA, pp. 393–404. ACM (2008)
Sheetrit, E., Nissim, N., Klimov, D., Shahar, Y.: Temporal probabilistic profiles for sepsis prediction in the ICU. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2961–2969. ACM (2019)
Mörchen, F., Fradkin, D.: Robust mining of time intervals with semi-interval partial order patterns. In: Proceedings of the 2010 SIAM International Conference on Data Mining, pp. 315–326. SIAM (2010)
Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Mining frequent arrangements of temporal intervals. Knowl. Inf. Syst. 21(2), 133 (2009)
Liu, Y., Nie, L., Liu, L., Rosenblum, D.S.: From action to activity: sensor-based activity recognition. Neurocomputing 181, 108–115 (2016)
Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)
Wu, S.Y., Chen, Y.L.: Mining nonambiguous temporal patterns for interval-based events. IEEE Trans. Knowl. Data Eng. 19(6), 742–758 (2007)
Han, J., et al.: PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the 17th International Conference on Data Engineering, pp. 215–224 (2001)
Chen, Y.C., Jiang, J.C., Peng, W.C., Lee, S.Y.: An efficient algorithm for mining time interval-based patterns in large database. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 49–58. ACM (2010)
Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0014140
Yao, H., Hamilton, H.J.: Mining itemset utilities from transaction databases. Data Knowl. Eng. 59(3), 603–626 (2006)
Ahmed, C.F., Tanbeer, S.K., Jeong, B.S.: A novel approach for mining high-utility sequential patterns in sequence databases. ETRI J. 32(5), 676–686 (2010)
Yin, J., Zheng, Z., Cao, L.: USpan: an efficient algorithm for mining high utility sequential patterns. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 660–668. ACM (2012)
Wu, C.W., Lin, Y.F., Yu, P.S., Tseng, V.S.: Mining high utility episodes in complex event sequences. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 536–544. ACM (2013)
Fournier-Viger, P., Yang, P., Lin, J.C.-W., Yun, U.: HUE-Span: fast high utility episode mining. In: Li, J., Wang, S., Qin, S., Li, X., Wang, S. (eds.) ADMA 2019. LNCS (LNAI), vol. 11888, pp. 169–184. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35231-8_12
Huang, J.W., Jaysawal, B.P., Chen, K.Y., Wu, Y.B.: Mining frequent and top-k high utility time interval-based events with duration patterns. Knowl. Inf. Syst. 61, 1331–1359 (2019)
Acknowledgments
The authors wish to thank Rahim Samei (Technical Manager at ISM Canada) and the anonymous reviewers for the insightful suggestions. This research was supported by funding from ISM Canada and NSERC Canada.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Mirbagheri, S.M., Hamilton, H.J. (2020). High-Utility Interval-Based Sequences. In: Song, M., Song, IY., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2020. Lecture Notes in Computer Science(), vol 12393. Springer, Cham. https://doi.org/10.1007/978-3-030-59065-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-59065-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59064-2
Online ISBN: 978-3-030-59065-9
eBook Packages: Computer ScienceComputer Science (R0)