Abstract
We study the submodular maximization problem in generalized streaming setting using a two-stage policy. In the streaming context, elements are released in a fashion that an element is revealed at one time. Subject to a limited memory capacity, the problem aims to sieve a subset of elements with a sublinear size \(\ell \), such that the expecting objective value of all utility functions over the summarized subsets has a performance guarantee. We present a generalized one pass, \(\left( \gamma ^5_{\min }/(5+ 2\gamma ^2_{\min } )-O(\epsilon )\right) \)-approximation, which consumes \(O(\epsilon ^{-1}\ell \log (\ell \gamma _{\min }^{-1}))\) memory and runs in \(O(\epsilon ^{-1}kmn\log (\ell \gamma _{\min }^{-1}))\) time, where k, n, m and \(\gamma _{\min }\) denote the cardinality constraint, the element stream size, the amount of the learned functions, and the minimum generic submodular ratio of the learned functions, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submodular maximization: massive data summarization on the fly. In: Proceedings of KDD, pp. 671–680 (2014)
Balkanski, E., Mirzasoleiman, B., Krause, A., Singer, Y.: Learning sparse combinatorial representations via two-stage submodular maximization. In: Proceedings of ICML, pp. 2207–2216 (2016)
Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization with preemption. In: Proceedings of SODA, pp. 1202–1216 (2015)
Gong, S., Nong, Q., Liu, W., Fang, Q.: Parametric monotone function maximization with matroid constraints. J. Global Optim. 75(3), 833–849 (2019). https://doi.org/10.1007/s10898-019-00800-2
Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of KDD, pp. 137–146 (2003)
Krause, A., McMahan, H.B., Guestrin, C., Gupta, A.: Robust submodular observation selection. J. Mach. Learn. Res. 9, 2761–2801 (2008)
Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: Proceedings of ACL, pp. 510–520 (2011)
Mitrovic, M., Kazemi, E., Zadimoghaddam, M., Karbasi, A.: Data summarization at scale: a two-stage submodular approach. In: Proceedings of ICML, pp. 3593–3602 (2018)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14, 265–294 (1978)
Stan, S., Zadimoghaddam, M., Krause, A., Karbasi, A.: Probabilistic submodular maximization in sub-linear time. In: Proceedings of ICML, pp. 3241–3250 (2017)
Yang, R., Gu, S., Gao, C., Wu, W., Wang, H., Xu, D.: A two-stage constrained submodular maximization. In: Proceedings of AAIM, pp. 329–340 (2019)
Yang, R., Xu, D., Li, M., Xu, Y.: Thresholding methods for streaming submodular maximization with a cardinality constraint and its variants. In: Du, D.-Z., Pardalos, P.M., Zhang, Z. (eds.) Nonlinear Combinatorial Optimization. SOIA, vol. 147, pp. 123–140. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16194-1_5
Acknowledgements
The first two and fourth authors are supported by Natural Science Foundation of China (No. 11871081). The third author is supported by Natural Science Foundation of China (No. 61772005) and Natural Science Foundation of Fujian Province (No. 2017J01753).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, R., Xu, D., Guo, L., Zhang, D. (2020). Parametric Streaming Two-Stage Submodular Maximization. In: Chen, J., Feng, Q., Xu, J. (eds) Theory and Applications of Models of Computation. TAMC 2020. Lecture Notes in Computer Science(), vol 12337. Springer, Cham. https://doi.org/10.1007/978-3-030-59267-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-59267-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59266-0
Online ISBN: 978-3-030-59267-7
eBook Packages: Computer ScienceComputer Science (R0)